76 research outputs found

    Effect of sludge treatment on the bioaccumulation of nonylphenol in grass grown on sludge-amended soil

    Get PDF
    We studied the accumulation of p353-nonylphenol residues in the biomass of grass grown in soil amended with sewage sludge submitted to various conditioning/dewatering treatments. Incubation experiments were conducted growing Poa pratensis in sludge-amended soils and applying one 14C-labelled isomer of nonylphenol in the different systems. More metabolites than parent compounds were recovered in both roots and leaves of the grass. The type of sludge conditioning and dewatering treatment had a slight effect on the bioaccumulation of nonylphenol and its metabolites. When the grass was cultivated in soils amended with dewatered sludge without conditioning pretreatment, an increased accumulation was observed in the roots, while the final biomass of the grass was lowe

    State-of-the-art production chains for peas, beans and chickpeas\u2014valorization of agro-industrial residues and applications of derived extracts

    Get PDF
    The world is confronted with the depletion of natural resources due to their unsustainable use and the increasing size of populations. In this context, the efficient use of by-products, residues and wastes generated from agro-industrial and food processing opens the perspective for a wide range of benefits. In particular, legume residues are produced yearly in very large amounts and may represent an interesting source of plant proteins that contribute to satisfying the steadily increasing global protein demand. Innovative biorefinery extraction cascades may also enable the recovery of further bioactive molecules and fibers from these insufficiently tapped biomass streams. This review article gives a summary of the potential for the valorization of legume residual streams resulting from agro-industrial processing and more particularly for pea, green bean and chickpea by-products/wastes. Valuable information on the annual production volumes, geographical origin and state-of-the-art technologies for the extraction of proteins, fibers and other bioactive molecules from this source of biomass, is exhaustively listed and discussed. Finally, promising applications, already using the recovered fractions from pea, bean and chickpea residues for the formulation of feed, food, cosmetic and packaging products, are listed and discussed

    Aerobic nonylphenol degradation and nitro-nonylphenol formation by microbial cultures from sediments

    Get PDF
    Nonylphenol (NP) is an estrogenic pollutant which is widely present in the aquatic environment. Biodegradation of NP can reduce the toxicological risk. In this study, aerobic biodegradation of NP in river sediment was investigated. The sediment used for the microcosm experiments was aged polluted with NP. The biodegradation of NP in the sediment occurred within 8 days with a lag phase of 2 days at 30°C. During the biodegradation, nitro-nonylphenol metabolites were formed, which were further degraded to unknown compounds. The attached nitro-group originated from the ammonium in the medium. Five subsequent transfers were performed from original sediment and yielded a final stable population. In this NP-degrading culture, the microorganisms possibly involved in the biotransformation of NP to nitro-nonylphenol were related to ammonium-oxidizing bacteria. Besides the degradation of NP via nitro-nonylphenol, bacteria related to phenol-degrading species, which degrade phenol via ring cleavage, are abundantly present
    corecore