1,166 research outputs found

    Production cross-sections and momentum distributions of fragments from neutron-deficient 36Ar at 1.05 A.GeV

    Full text link
    We have measured production cross sections and longitudinal momentum distributions of fragments from neutron-deficient 36Ar at 1.05 A.GeV. The production cross-sections show excellent agreement with the predictions of the semiempirical formula EPAX. We have compared these results, involving extremly neutron deficient nuclei, with model calculations to extract informa tion about the response of these models close to the driplines. The longitudinal momentum distributions have also been extracted and are compared with the Goldhaber and Morrissey systematics.Comment: 16 pages, 6 figure

    Towards portable muography with small-area, gas-tight glass Resistive Plate Chambers

    Get PDF
    Imaging techniques that use atmospheric muons, collectively named under the neologism "muography", have seen a tremendous growth in recent times, mainly due to their diverse range of applications. The most well-known ones include but are not limited to: volcanology, archaeology, civil engineering, nuclear reactor monitoring, nuclear waste characterization, underground mapping, etc. These methods are based on the attenuation or deviation of muons to image large and/or dense objects where conventional techniques cannot work or their use becomes challenging. In this context, we have constructed a muography telescope based on "mini glass-RPC planes" following a design similar to the glass-RPC detectors developed by the CALICE Collaboration and used by the TOMUVOL experiment in the context of volcano radiography, but with smaller active area (16 Ă—\times 16 cm2^{2}). The compact size makes it an attractive choice with respect to other detectors previously employed for imaging on similar scales. An important innovation in this design is that the detectors are sealed. This makes the detector more portable and solves the usual safety and logistic issues for gas detectors operated underground and/or inside small rooms. This paper provides an overview on our guiding principles, the detector development and our operational experiences. Drawing on the lessons learnt from the first prototype, we also discuss our future direction for an improved second prototype, focusing primarily on a recently adopted serigraphy technique for the resistive coating of the glass plates.Comment: 8 pages, 7 figures, XV Workshop on Resistive Plate Chambers and Related Detectors (RPC2020

    Proton vs. neutron halo breakup

    Get PDF
    In this paper we show how effective parameters such as effective binding energies can be defined for a proton in the combined nuclear-Coulomb potential, including also the target potential, in the case in which the proton is bound in a nucleus which is partner of a nuclear reaction. Using such effective parameters the proton behaves similarly to a neutron. In this way some unexpected results obtained from dynamical calculations for reactions initiated by very weakly bound proton halo nuclei can be interpreted. Namely the fact that stripping dominates the nuclear breakup cross section which in turn dominates over the Coulomb breakup even when the target is heavy at medium to high incident energies. Our interpretation helps also clarifying why the existence and characteristics of a proton halo extracted from different types of data have sometimes appeared contradictory.Comment: 7 Latex pages, 3 table, 3 ps figures, to appear in Phys. Rev.

    Charge density distributions and related form factors in neutron-rich light exotic nuclei

    Full text link
    Charge form factors corresponding to proton density distributions in exotic nuclei, such as 6,8^{6,8}He, 11^{11}Li, 17,19^{17,19}B and 14^{14}Be are calculated and compared. The results can be used as tests of various theoretical models for the exotic nuclei structure in possible future experiments using a colliding electron-exotic nucleus storage ring. The result of such a comparison would show the effect of the neutron halo or skin on the proton distributions in exotic nuclei.Comment: 11 pages, 4 figures, to be published in International Journal of Modern Physics

    Coulomb Dissociation of 27P^{27}P

    Get PDF

    Portable Resistive Plate Chambers for Muography in confined environments

    Full text link
    Muography (or muon radiography) is an imaging technique that relies on the use of cosmogenic muons as a free and safe radiation source. It can be applied in various fields such as archaeology, civil engineering, geology, nuclear reactor monitoring, nuclear waste characterization, underground surveys, etc. In such applications, sometimes deploying muon detectors is challenging due to logistics, e.g. in a narrow underground tunnel or mine. Therefore, we are developing muon detectors whose design goals include portability, robustness, autonomy, versatility, and safety. Our portable muon detectors (or ``muoscopes'') are based on Resistive Plate Chambers (RPC), planar detectors that use ionization in a thin gas gap to detect cosmic muons. Prototype RPCs of active area 16×16 cm216 \times 16~cm^2 and 28×28 cm228 \times 28~cm^2 were built in our laboratories at Louvain-la-Neuve (UCLouvain) and Ghent (UGent) to test and compare various design options. Benefiting from the experience gained in building and operating these prototypes, we are proceeding towards the development of improved prototypes with more advanced technical layout and readiness. In this paper we provide the status of our performance studies, including the cross-validation of the two types of prototypes in a joint data taking, and an outline of the direction ahead

    Chiral three-nucleon forces and bound excited states in neutron-rich oxygen isotopes

    Get PDF
    We study the spectra of neutron-rich oxygen isotopes based on chiral two- and three-nucleon interactions. First, we benchmark our many-body approach by comparing ground-state energies to coupled-cluster results for the same two-nucleon interaction, with overall good agreement. We then calculate bound excited states in 21,22,23O, focusing on the role of three-nucleon forces, in the standard sd shell and an extended sdf7/2p3/2 valence space. Chiral three-nucleon forces provide important one- and two-body contributions between valence neutrons. We find that both these contributions and an extended valence space are necessary to reproduce key signatures of novel shell evolution, such as the N = 14 magic number and the low-lying states in 21O and 23O, which are too compressed with two-nucleon interactions only. For the extended space calculations, this presents first work based on nuclear forces without adjustments. Future work is needed and open questions are discussed.Comment: 6 pages, 4 figures, published versio

    One-neutron removal reactions on Al isotopes around the N = 20 shell closure

    Get PDF
    Publisher's version/PDFThe one-neutron removal cross sections of neutron-rich Al isotopes and longitudinal momentum distributions of the residues have been measured for A = 33 to 36 at relativistic energies ([approximate to] 900 MeV/u). The inclusive data have been interpreted within the eikonal approximation. The evolution of the single-particle occupancy in the ground state of [superscript 33,34,35]Al has been studied and compared with shell model predictions. The inferred 2s[subscript 1/2] neutron occupancy in the [superscript 33]Al ground-state wave function is 20% to 40% lower than the predicted one. The inclusive data do not exclude the presence of intruder states. Some intruder l = 1 occupancy is found in [superscript 34]Al, similarly to [superscript 33]Mg. The single-particle 1f[subscript 7/2] occupancy shows a gradual increase at N = 22. Correspondingly, a decrease of the 1d[subscript 3/2] strength has been observed

    Investigation of the 6He cluster structures

    Full text link
    The 4He+2n and t+t clustering of the 6He ground state were investigated by means of the transfer reaction 6He(p,t)4He at 25 MeV/nucleon. The experiment was performed in inverse kinematics at GANIL with the SPEG spectrometer coupled to the MUST array. Experimental data for the transfer reaction were analyzed by a DWBA calculation including the two neutrons and the triton transfer. The couplings to the 6He --> 4He + 2n breakup channels were taken into account with a polarization potential deduced from a coupled-discretized-continuum channels analysis of the 6He+1H elastic scattering measured at the same time. The influence on the calculations of the 4He+t exit potential and of the triton sequential transfer is discussed. The final calculation gives a spectroscopic factor close to one for the 4He+2n configuration as expected. The spectroscopic factor obtained for the t+t configuration is much smaller than the theoretical predictions.Comment: 10 pages, 11 figures, accepted in PR
    • …
    corecore