439 research outputs found

    Topological insulating phases in mono and bilayer graphene

    Full text link
    We analyze the influence of different quadratic interactions giving rise to time reversal invariant topological insulating phases in mono and bilayer graphene. We make use of the effective action formalism to determine the dependence of the Chern Simons coefficient on the different interactions

    Topological electric current from time-dependent elastic deformations in graphene

    Get PDF
    We show the possibility of inducing an edge charge current by applying time-dependent strain in gapped graphene samples preserving time reversal symmetry. We demonstrate that this edge current has the same origin as the valley Hall response known to exist in the system.Comment: 5 pages, 3 figures, Accepted for publication in Phys. Rev.

    Electronic properties of disclinated flexible membrane beyond the inextensional limit: Application to graphene

    Full text link
    Gauge-theory approach to describe Dirac fermions on a disclinated flexible membrane beyond the inextensional limit is formulated. The elastic membrane is considered as an embedding of 2D surface into R^3. The disclination is incorporated through an SO(2) gauge vortex located at the origin, which results in a metric with a conical singularity. A smoothing of the conical singularity is accounted for by replacing a disclinated rigid plane membrane with a hyperboloid of near-zero curvature pierced at the tip by the SO(2) vortex. The embedding parameters are chosen to match the solution to the von Karman equations. A homogeneous part of that solution is shown to stabilize the theory. The modification of the Landau states and density of electronic states of the graphene membrane due to elasticity is discussed.Comment: 15 pages, Journal of Physics:Condensed Matter in pres

    Charge inhomogeneities due to smooth ripples in graphene sheets

    Full text link
    We study the effect of the curved ripples observed in the free standing graphene samples on the electronic structure of the system. We model the ripples as smooth curved bumps and compute the Green's function of the Dirac fermions in the curved surface. Curved regions modify the Fermi velocity that becomes a function of the point on the graphene surface and induce energy dependent oscillations in the local density of states around the position of the bump. The corrections are estimated to be of a few percent of the flat density at the typical energies explored in local probes such as scanning tunnel microscopy that should be able to observe the predicted correlation of the morphology with the electronics. We discuss the connection of the present work with the recent observation of charge anisotropy in graphene and propose that it can be used as an experimental test of the curvature effects.Comment: 9 pages, 5 figures. v2: Abstract and discussion about experimental consequences expande

    Revivals of quantum wave-packets in graphene

    Full text link
    We investigate the propagation of wave-packets on graphene in a perpendicular magnetic field and the appearance of collapses and revivals in the time-evolution of an initially localised wave-packet. The wave-packet evolution in graphene differs drastically from the one in an electron gas and shows a rich revival structure similar to the dynamics of highly excited Rydberg states. We present a novel numerical wave-packet propagation scheme in order to solve the effective single-particle Dirac-Hamiltonian of graphene and show how the collapse and revival dynamics is affected by the presence of disorder. Our effective numerical method is of general interest for the solution of the Dirac equation in the presence of potentials and magnetic fields.Comment: 22 pages, 10 figures, 3 movies, to appear in New Journal of Physic

    Modelling planktic foraminifer growth and distribution using an ecophysiological multi-species approach

    Get PDF
    International audienceWe present an eco-physiological model reproducing the growth of eight foraminifer species (Neogloboquad-rina pachyderma, Neogloboquadrina incompta, Neoglobo-quadrina dutertrei, Globigerina bulloides, Globigeri-noides ruber, Globigerinoides sacculifer, Globigerinella si-phonifera and Orbulina universa). By using the main physiological rates of foraminifers (nutrition, respiration, symbi-otic photosynthesis), this model estimates their growth as a function of temperature, light availability, and food concentration. Model parameters are directly derived or calibrated from experimental observations and only the influence of food concentration (estimated via Chlorophyll-a concentration) was calibrated against field observations. Growth rates estimated from the model show positive correlation with observed abundance from plankton net data suggesting close coupling between individual growth and population abundance. This observation was used to directly estimate potential abundance from the model-derived growth. Using satellite data, the model simulate the dominant foraminifer species with a 70.5% efficiency when compared to a data set of 576 field observations worldwide. Using outputs of a biogeochemical model of the global ocean (PISCES) instead of satellite images as forcing variables gives also good results, but with lower efficiency (58.9%). Compared to core tops observations, the model also correctly reproduces the relative worldwide abundance and the diversity of the eight species when using either satellite data either PISCES results. This model allows prediction of the season and water depth at which each species has its maximum abundance potential. This offers promising perspectives for both an improved quantification of paleoceanographic reconstructions and for a better understanding of the foraminiferal role in the marine carbon cycle

    The spatially resolved star formation history of CALIFA galaxies: Cosmic time scales

    Full text link
    This paper presents the mass assembly time scales of nearby galaxies observed by CALIFA at the 3.5m telescope in Calar Alto. We apply the fossil record method of the stellar populations to the complete sample of the 3rd CALIFA data release, with a total of 661 galaxies, covering stellar masses from 108.4^{8.4} to 1012^{12} M_{\odot} and a wide range of Hubble types. We apply spectral synthesis techniques to the datacubes and process the results to produce the mass growth time scales and mass weighted ages, from which we obtain temporal and spatially resolved information in seven bins of galaxy morphology and six bins of stellar mass (M_{\star}) and stellar mass surface density (Σ\Sigma_{\star}). We use three different tracers of the spatially resolved star formation history (mass assembly curves, ratio of half mass to half light radii, and mass-weighted age gradients) to test if galaxies grow inside-out, and its dependence with galaxy stellar mass, Σ\Sigma_{\star}, and morphology. Our main results are as follows: (a) The innermost regions of galaxies assemble their mass at an earlier time than regions located in the outer parts; this happens at any given M_{\star}, Σ\Sigma_{\star}, or Hubble type, including the lowest mass systems. (b) Galaxies present a significant diversity in their characteristic formation epochs for lower-mass systems. This diversity shows a strong dependence of the mass assembly time scales on Σ\Sigma_{\star} and Hubble type in the lower-mass range (108.4^{8.4} to 1010.4^{10.4}), but a very mild dependence in higher-mass bins. (c) All galaxies show negative \langlelog ageM\rangle_{M} gradients in the inner 1 HLR. The profile flattens with increasing values of Σ\Sigma_{\star}. There is no significant dependence on M_{\star} within a particular Σ\Sigma_{\star} bin, except for the lowest bin, where the gradients becomes steeper.Comment: 15 pages, 13 figures, 3 tables, accepted for publication in Astronomy & Astrophysics. *Abridged abstract
    corecore