216 research outputs found

    Electromagnetic KY production from the proton in a Regge-plus-resonance approach

    Get PDF
    A Regge-plus-resonance (RPR) description of the p(\gamma,K)Y and p(e,e'K)Y processes (Y = \Lambda, \Sigma^{0,+}) is presented. The proposed reaction amplitude consists of Regge-trajectory exchanges in the t channel, supplemented with a limited selection of s-channel resonance diagrams. The RPR framework contains a considerably smaller number of free parameters than a typical effective-Lagrangian model. Nevertheless, it provides an acceptable overall description of the photo- and electroproduction observables over an extensive photon energy range. It is shown that the electroproduction response functions and polarization observables are particularly useful for fine-tuning both the background and resonance parameters.Comment: 4 pages, 3 figures, Proceedings for IX International Conference on Hypernuclear and Strange Particle Physics (HYP2006), October 10-14 2006, Main

    Electroproduction of kaons from the proton in a Regge-plus-resonance approach

    Get PDF
    We present a Regge-plus-resonance (RPR) description of the p(e,e'K^+)Y processes (Y=\Lambda,\Sigma^0) in the resonance region. The background contributions to the RPR amplitude are constrained by the high-energy p(\gamma, K^+)Y data. As a result, the number of free model parameters in the resonance region is considerably reduced compared to typical effective-Lagrangian approaches. We compare a selection of RPR model variants, originally constructed to describe KYKY photoproduction, with the world electroproduction database. The electromagnetic form factors of the intermediate N^*s and $\Delta^*s are computed in the Bonn constituent-quark model. With this input, we find a reasonable description of the p(e,e'K^+)Y data without adding or readjusting any parameters. It is demonstrated that the electroproduction response functions are extremely useful for fine-tuning both the background and resonant contributions to the reaction dynamics.Comment: 14 pages, 7 figures; added discussion on double counting in the RPR model; accepted for publication in Phys. Lett.

    Electromagnetic form factors of hyperons in a relativistic quark model

    Get PDF
    The relativistically covariant constituent quark model developed by the Bonn group is used to compute the EM form factors of strange baryons. We present form-factor results for the ground-state and some excited hyperons. The computed magnetic moments agree well with the experimental values and the magnetic form factors follow a dipole Q2Q^2 dependence.Comment: 4 pages, 1 figure, Proceedings for NSTAR '04 conference in Grenoble, France, March 24-27, 2004 (World Scientific

    Chiral constituent quark model study of the process γp→ηp\gamma p \to \eta p

    Full text link
    A constituent quark model is developed for the reaction, allowing us to investigate all available data for differential cross sections as well as single polarization asymmetries (beam and target) by including {\it all} of the PDG, one to four star, nucleon resonances (S11S_{11}, P11P_{11}, P13P_{13}, D13D_{13}, D15D_{15}, F15F_{15}, F17F_{17}, G17G_{17}, G19G_{19}, H19H_{19}, I1,11I_{1,11}, and K1,13K_{1,13}). Issues related to the missing resonances are also briefly discussed by examining possible contributions from several new resonances (S11S_{11}, P11P_{11}, P13P_{13}, D13D_{13}, D15 D_{15}, and H1,11H_{1,11}).Comment: 3 pages,2 figures, presented in NSTAR2007, Bonn, Germany,5 - 8 September 200

    Forward-angle K+ Lambda photoproduction in a Regge-plus-resonance approach

    Get PDF
    We present an effective-Lagrangian description for forward-angle K+ Lambda photoproduction from the proton, valid for photon lab energies from threshold up to 16 GeV. The high-energy part of the amplitude is modeled in terms of t-channel Regge-trajectory exchange. The sensitivity of the calculated observables to the Regge-trajectory phase is investigated in detail. The model is extended towards the resonance region by adding a number of s-channel resonances to the t-channel background. The proposed hybrid ``Regge-plus-resonance'' (RPR) approach allows one to exploit the p(gamma,K+)Lambda data in their entirety, resulting in stronger constraints on both the background and resonance couplings. The high-energy data can be used to fix the background contributions, leaving the resonance couplings as the sole free parameters in the resonance region. We compare various implementations of the RPR model, and explore to what extent the description of the data can be improved by introducing the ``new'' resonances D13(1900) and P11(1900). Despite its limited number of free parameters, the proposed RPR approach provides an efficient description of the p(gamma,K+)Lambda dynamics in and beyond the resonance region.Comment: 31 pages, 9 figures, accepted for publication in PRC. Section IIIB modified to include the most recent data; discussion of results and conclusions changed accordingl

    Regge-plus-resonance treatment of the p(gamma,K^+)Sigma^0 and p(gamma,K^0)Sigma^+ reactions at forward kaon angles

    Full text link
    An effective-Lagrangian framework for K Sigma photoproduction from the proton is presented. The proposed model is applicable at forward kaon angles and photon lab energies from threshold up to 16 GeV. The high-energy part of the p(gamma,K^+)Sigma^0 and p(gamma,K^0)Sigma^+ amplitudes is expressed in terms of Regge-trajectory exchange in the t channel. By supplementing this Regge background with a number of s-channel resonances, the model is extended towards the resonance region. The resulting ``Regge-plus-resonance'' (RPR) approach has the advantage that the background contributions involve only a few parameters, which can be largely constrained by the high-energy data. This work compares various implementations of the RPR model, and explores which resonance contributions are required to fit the data presently at hand. It is demonstrated that, through the inclusion of one K and two K* trajectories, the RPR framework provides an efficient and unified description of the K^+ Sigma^0 and K^0 Sigma^+ photoproduction channels over an extensive energy range.Comment: 33 pages, 15 figures; added discussion on new double-polarization data (Cx and Cz) in Section I

    Electric and magnetic form factors of strange baryons

    Full text link
    Predictions for the electromagnetic form factors of the Lambda$, Sigma and Xi hyperons are presented. The numerical calculations are performed within the framework of the fully relativistic constituent-quark model developed by the Bonn group. The computed magnetic moments compare favorably with the experimentally known values. Most magnetic form factors G_M(Q^2) can be parametrized in terms of a dipole with cutoff masses ranging from 0.79 to 1.14 GeV.Comment: 15 pages, 8 figures, 3 tables, submitted to Eur. Phys. J.

    Phosphorylation of NFATC1 at PIM1 target sites is essential for its ability to promote prostate cancer cell migration and invasion

    Get PDF
    Background Progression of prostate cancer from benign local tumors to metastatic carcinomas is a multistep process. Here we have investigated the signaling pathways that support migration and invasion of prostate cancer cells, focusing on the role of the NFATC1 transcription factor and its post-translational modifications. We have previously identified NFATC1 as a substrate for the PIM1 kinase and shown that PIM1-dependent phosphorylation increases NFATC1 activity without affecting its subcellular localization. Both PIM kinases and NFATC1 have been reported to promote cancer cell migration, invasion and angiogenesis, but it has remained unclear whether the effects of NFATC1 are phosphorylation-dependent and which downstream targets are involved. Methods We used mass spectrometry to identify PIM1 phosphorylation target sites in NFATC1, and analysed their functional roles in three prostate cancer cell lines by comparing phosphodeficient mutants to wild-type NFATC1. We used luciferase assays to determine effects of phosphorylation on NFAT-dependent transcriptional activity, and migration and invasion assays to evaluate effects on cell motility. We also performed a microarray analysis to identify novel PIM1/NFATC1 targets, and validated one of them with both cellular expression analyses and in silico in clinical prostate cancer data sets. Results Here we have identified ten PIM1 target sites in NFATC1 and found that prevention of their phosphorylation significantly decreases the transcriptional activity as well as the pro-migratory and pro-invasive effects of NFATC1 in prostate cancer cells. We observed that also PIM2 and PIM3 can phosphorylate NFATC1, and identified several novel putative PIM1/NFATC1 target genes. These include the ITGA5 integrin, which is differentially expressed in the presence of wild-type versus phosphorylation-deficient NFATC1, and which is coexpressed with PIM1 and NFATC1 in clinical prostate cancer specimens. Conclusions Based on our data, phosphorylation of PIM1 target sites stimulates NFATC1 activity and enhances its ability to promote prostate cancer cell migration and invasion. Therefore, inhibition of the interplay between PIM kinases and NFATC1 may have therapeutic implications for patients with metastatic forms of cancer.Peer reviewe
    • …
    corecore