11 research outputs found

    Cancertool: A visualization and representation interface to exploit cancer datasets

    Get PDF
    With the advent of OMICs technologies, both individual research groups and consortia have spear-headed the characterization of human samples of multiple pathophysiologic origins, resulting in thousands of archived genomes and transcriptomes. Although a variety of web tools are now available to extract information from OMICs data, their utility has been limited by the capacity of nonbioinformatician researchers to exploit the information. To address this problem, we have developed CANCERTOOL, a web-based interface that aims to overcome the major limitations of public transcriptomics dataset analysis for highly prevalent types of cancer (breast, prostate, lung, and colorectal). CANCERTOOL provides rapid and comprehensive visualization of gene expression data for the gene(s) of interest in well-annotated cancer datasets. This visualization is accompanied by generation of reports customized to the interest of the researcher (e.g., editable figures, detailed statistical analyses, and access to raw data for reanalysis). It also carries out gene-to-gene correlations in multiple datasets at the same time or using preset patient groups. Finally, this new tool solves the time-consuming task of performing functional enrichment analysis with gene sets of interest using up to 11 different databases at the same time. Collectively, CANCERTOOL represents a simple and freely accessible interface to interrogate well-annotated datasets and obtain publishable representations that can contribute to refinement and guidance of cancer-related investigations at all levels of hypotheses and design.We are grateful to Iñaki Lazaro for the design of the tumor type logos, Evarist Planet and Antoni Berenguer for insightful discussions, and the Carracedo lab for valuable input. V. Torrano is funded by Fundación Vasca de Innovación e Investigación Sanitarias, BIOEF (BIO15/CA/052), the AECC J.P. Bizkaia and the Basque Department of Health (2016111109). The work of A. Carracedo is supported by the Basque Department of Industry, Tourism and Trade (Etortek) and the Department of Education (IKERTALDE IT1106-16, also participated by A. Gomez-Muñoz), the BBVA Foundation, the MINECO [SAF2016-79381-R (FEDER/EU)]; Severo Ochoa Excellence Accreditation SEV-2016-0644; Excellence Networks (SAF2016-81975-REDT), European Training Networks Project (H2020-MSCA-ITN-308 2016 721532), the AECC IDEAS16 (IDEAS175CARR), and the European Research Council (Starting Grant 336343, PoC 754627). CIBERONC was cofunded with FEDER funds. The work of A. Aransay is supported by the Basque Department of Industry, Tourism and Trade (Etortek and Elkartek Programs), the Innovation Technology Department of Bizkaia County, CIBERehd Network, and Spanish MINECO the Severo Ochoa Excellence Accreditation (SEV-2016-0644). I. Apaolaza is funded by a Basque Government predoctoral grant (PRE_2017_2_0028). X.R. Bustelo is supported by grants from the Castilla-León Government (BIO/SA01/15, CSI049U16), Spanish Ministry of Economy and Competitiveness (MINECO; SAF2015-64556-R), Worldwide Cancer Research (14-1248), Ramón Areces Foundation, and the Spanish Society against Cancer (GC16173472GARC). Funding from MINECO to X.R. Bustelo is partially contributed by the European Regional Development Fund. The work of F.J. Planes is supported by the MINECO (BIO2016-77998-R) and ELKARTEK Programme of the Basque Government (KK-2016/00026)

    Borrelia burgdorferi infection induces long-term memory-like responses in macrophages with tissue-wide consequences in the heart

    Get PDF
    Lyme carditis is an extracutaneous manifestation of Lyme disease characterized by episodes of atrioventricular block of varying degrees and additional, less reported cardiomyopathies. The molecular changes associated with the response to Borrelia burgdorferi over the course of infection are poorly understood. Here, we identify broad transcriptomic and proteomic changes in the heart during infection that reveal a profound down-regulation of mitochondrial components. We also describe the long-term functional modulation of macrophages exposed to live bacteria, characterized by an augmented glycolytic output, increased spirochetal binding and internalization, and reduced inflammatory responses. In vitro, glycolysis inhibition reduces the production of tumor necrosis factor (TNF) by memory macrophages, whereas in vivo, it produces the reversion of the memory phenotype, the recovery of tissue mitochondrial components, and decreased inflammation and spirochetal burdens. These results show that B. burgdorferi induces long-term, memory-like responses in macrophages with tissue-wide consequences that are amenable to be manipulated in vivo.Supported by grants from the Spanish Ministry of Science, Innovation and Universities (MCIU) co-financed with FEDER funds (SAF2015-65327-R and RTI2018-096494-B-100 to JA; BFU2016-76872-R to EB, AGL2017-86757-R to LA, SAF2017-87301-R to MLMC, SAF2015-64111-R to AP, SAF2015-73549-JIN to HR), Instituto de Salud Carlos III (PIE13/0004 to AP), the Basque Government Department of Health (2015111117 to LA), the Basque Foundation for Innovation and Health Research (BIOEF), through the EiTB Maratoia grant BIO15/CA/016/BS to MLMC, the regional Government of Andalusia co-funded by CEC and FEDER funds (Proyectos de Excelencia P12-CTS-2232) and Fundación Domingo Martínez (to AP). LA is supported by the Ramon y Cajal program (RYC-2013-13666). DB, MMR and TMM are recipients of MCIU FPI fellowships. ACG and AP are recipients of fellowships form the Basque Government. APC is a recipient of a fellowship from the University of the Basque Country. We thank the MCIU for the Severo Ochoa Excellence accreditation (SEV-2016-0644), the Basque Department of Industry, Tourism and Trade (Etortek and Elkartek programs), the Innovation Technology Department of the Bizkaia Province and the CIBERehd network. DB and JA are supported by a grant from the Jesús de Gangoiti Barrera Foundation

    Lee escuchando: "La autopista del sur" de Julio Cortázar

    No full text
    En el marco de las medidas de aislamiento dispuestas del 20 de marzo de 2020 por la pandemia de COVID-19, y durante todo ese año, se emitieron, los jueves a las 00 horas por LR11 Radio Universidad Nacional de La Plata, "cuentos corales" bajo el título de Lee escuchando. Más de mil voces fueron convocadas y se sumaron a la lectura de cuentos de diversos autores. Fue una idea y realización de los periodistas Mario Arteca y Damián Zárate. En esta segunda entrega, el cuento es "La autopista del sur", incluído en el libro Todos los fuegos el fuego, de Julio Cortázar, publicado en 1966 por Editorial Sudamericana. Las voces pertenecen a (por orden de aparición): Cecilia, Roth; Mario Arteca; Eugenia Giusti; Adrián Korol; Sabrina Ameghino; Esteba Lopez Brusa; Maria Creuza; Juan Leyrado; Nelly Buscaglia; Facundo Avalo, Gabriela Acher; Gabriel Zárate; Alba Igarzabal; Miguel Arena; Florencia Abate; Juan Pablo Weisse; Ana María Shua; Sergio "Maravilla" Martínez; Paula Tomasoni; Mariano Vincenti; Carmen Valdez; Ezequiel Lasta; Nidia Aguirre; Andrés Ileana, Patricio Lorente; Jorge "Mono" Perez; Teresa Parodi; Hernás Castro Baldi; Anabel Cherubito y Alejandro Apo.Idea de Mario Arteca y Damián Zárate. La locución artística es de Juan Pablo Weisse y Diego Carrera. Edición a cargo del operador técnico Juan Manuel de Vega.Radio Universidad Nacional de La Plat

    mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer

    No full text
    Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#termsActivation of the PTEN-PI3K-mTORC1 pathway consolidates metabolic programs that sustain cancer cell growth and proliferation,. Here we show that mTORC1 regulates polyamine dynamics, a metabolic route that is essential for oncogenicity. Through the use of integrative metabolomics in a mouse model and human biopsies of prostate cancer, we identified alterations in tumours impacting on the production of decarboxylated S-adenosylmethionine (dcSAM) and polyamine synthesis. Mechanistically, this metabolic rewiring stems from mTORC1-dependent regulation of S-adenosylmethionine decarboxylase 1 (AMD1) stability. This novel molecular regulation was validated in murine and human cancer specimens. AMD1 was upregulated in prostate cancer specimens with activated mTORC1. Conversely, samples from a clinical trial with the mTORC1 inhibitor everolimus exhibited a predominant decrease in AMD1 immunoreactivity that was associated to a decrease in proliferation, in line with the requirement of dcSAM production for oncogenicity. These findings provide fundamental information about the complex regulatory landscape controlled by mTORC1 to integrate and translate growth signals into an oncogenic metabolic program

    Political identities in conflict: the Lordship of Vizcaya in the fourteenth and fifteenth centuries

    No full text
    corecore