4,060 research outputs found

    Experimental investigation of the elastoplastic response of aluminum silicate spray dried powder during cold compaction

    Get PDF
    Mechanical experiments have been designed and performed to investigate the elasto-plastic behaviour of green bodies formed from an aluminum silicate spray dried powder used for tiles production. Experiments have been executed on samples obtained from cold compaction into a cylindrical mould and include: uniaxial strain, equi-biaxial flexure and high-pressure triaxial compression/extension tests. Two types of powders have been used to realize the green body samples, differing in the values of water content, which have been taken equal to those usually employed in the industrial forming of traditional ceramics. Yielding of the green body during compaction has been characterized in terms of yield surface shape, failure envelope, and evolution of cohesion and void ratio with the forming pressure, confirming the validity of previously proposed constitutive models for dense materials obtained through cold compaction of granulates.Comment: 17 pages; Journal of the European Ceramic Society, 201

    Spontaneous polarization and piezoelectric constants of III-V nitrides

    Full text link
    The spontaneous polarization, dynamical Born charges, and piezoelectric constants of the III-V nitrides AlN, GaN, and InN are studied ab initio using the Berry phase approach to polarization in solids. The piezoelectric constants are found to be up 10 times larger than in conventional III-V's and II-VI's, and comparable to those of ZnO. Further properties at variance with those of conventional III-V compounds are the sign of the piezoelectric constants (positive as in II-VI's) and the very large spontaneous polarization.Comment: RevTeX 4 pages, improved upon revie

    First-principles study of lattice instabilities in the ferromagnetic martensite Ni2_2MnGa

    Full text link
    The phonon dispersion relations and elastic constants for ferromagnetic Ni2_2MnGa in the cubic and tetragonally distorted Heusler structures are computed using density-functional and density-functional perturbation theory within the spin-polarized generalized-gradient approximation. For 0.9<c/a<1.060.9<c/a<1.06, the TA2_2 tranverse acoustic branch along [110][110] and symmetry-related directions displays a dynamical instability at a wavevector that depends on c/ac/a. Through examination of the Fermi-surface nesting and electron-phonon coupling, this is identified as a Kohn anomaly. In the parent cubic phase the computed tetragonal shear elastic constant, C^\prime=(C11_{11}-C12_{12})/2, is close to zero, indicating a marginal elastic instability towards a uniform tetragonal distortion. We conclude that the cubic Heusler structure is unstable against a family of energy-lowering distortions produced by the coupling between a uniform tetragonal distortion and the corresponding [110][110] modulation. The computed relation between the c/ac/a ratio and the modulation wavevector is in excellent agreement with structural data on the premartensitic (c/ac/a = 1) and martensitic (c/ac/a = 0.94) phases of Ni2_2MnGa.Comment: submitted to Phys. Rev.

    Enhancement of piezoelectricity in a mixed ferroelectric

    Full text link
    We use first-principles density-functional total energy and polarization calculations to calculate the piezoelectric tensor at zero temperature for both cubic and simple tetragonal ordered supercells of Pb_3GeTe_4. The largest piezoelectric coefficient for the tetragonal configuration is enhanced by a factor of about three with respect to that of the cubic configuration. This can be attributed to both the larger strain-induced motion of cations relative to anions and higher Born effective charges in the tetragonal case. A normal mode decomposition shows that both cation ordering and local relaxation weaken the ferroelectric instability, enhancing piezoelectricity.Comment: 5 pages, revtex, 2 eps figure

    Dual targeting of ptp1b and aldose reductase with marine drug phosphoeleganin: A promising strategy for treatment of type 2 diabetes

    Get PDF
    An in-depth study on the inhibitory mechanism on protein tyrosine phosphatase 1B (PTP1B) and aldose reductase (AR) enzymes, including analysis of the insulin signalling pathway, of phosphoeleganin, a marine-derived phosphorylated polyketide, was achieved. Phosphoeleganin was demonstrated to inhibit both enzymes, acting respectively as a pure non-competitive inhibitor of PTP1B and a mixed-type inhibitor of AR. In addition, in silico docking analyses to evaluate the interaction mode of phosphoeleganin with both enzymes were performed. Interestingly, this study showed that phosphoeleganin is the first example of a dual inhibitor polyketide extracted from a marine invertebrate, and it could be used as a versatile scaffold structure for the synthesis of new designed multiple ligands

    A data-driven energy platform: from energy performance certificates to human-readable knowledge through dynamic high-resolution geospatial maps

    Get PDF
    The energy performance certificate (EPC) is a document that certifies the average annual energy consumption of a building in standard conditions and allows it to be classified within a so-called energy class. In a period such as this, when greenhouse gas emissions are of considerable importance and where the objective is to improve energy security and reduce energy costs in our cities, energy certification has a key role to play. The proposed work aims to model and characterize residential buildings’ energy efficiency by exploring heterogeneous, geo-referenced data with different spatial and temporal granularity. The paper presents TUCANA (TUrin Certificates ANAlysis), an innovative data mining engine able to cover the whole analytics workflow for the analysis of the energy performance certificates, including cluster analysis and a model generalization step based on a novel spatial constrained K-NN, able to automatically characterize a broad set of buildings distributed across a major city and predict different energy-related features for new unseen buildings. The energy certificates analyzed in this work have been issued by the Piedmont Region (a northwest region of Italy) through open data. The results obtained on a large dataset are displayed in novel, dynamic, and interactive geospatial maps that can be consulted on a web application integrated into the system. The visualization tool provides transparent and human-readable knowledge to various stakeholders, thus supporting the decision-making process

    Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials

    Get PDF
    Quantum ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). Quantum ESPRESSO stands for "opEn Source Package for Research in Electronic Structure, Simulation, and Optimization". It is freely available to researchers around the world under the terms of the GNU General Public License. Quantum ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively-parallel architectures, and a great effort being devoted to user friendliness. Quantum ESPRESSO is evolving towards a distribution of independent and inter-operable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.Comment: 36 pages, 5 figures, resubmitted to J.Phys.: Condens. Matte

    p190 Rho-GTPase activating protein associates with plexins and it is required for semaphorin signalling

    Get PDF
    Plexins are transmembrane receptors for semaphorins, guiding cell migration and axon extension. Plexin activation leads to the disassembly of integrin-based focal adhesive structures and to actin cytoskeleton remodelling and inhibition of cell migration; however, the underlying molecular mechanisms are unclear. We consistently observe a transient decrease of cellular RhoA-GTP levels upon plexin activation in adherent cells. One of the main effectors of RhoA downregulation is p190, a ubiquitously expressed GTPase activating protein (GAP). We show that, in p190-deficient fibroblasts, the typical functional activities mediated by plexins (such as cell collapse and inhibition of integrin-based adhesion) are blocked or greatly impaired. Notably, the functional response can be rescued in these cells by re-expressing exogenous p190, but not a mutant form specifically lacking RhoGAP activity. We furthermore demonstrate that semaphorin function is blocked in epithelial cells, primary endothelial cells and neuroblasts upon treatment with small interfering RNAs that knockdown p190 expression. Finally, we show that p190 transiently associates with plexins, and its RhoGAP activity is increased in response to semaphorin stimulation. We conclude that p190-RhoGAP is crucially involved in semaphorin signalling to the actin cytoskeleton, via interaction with plexins

    Cluster-based density-functional approach to quantum transport through molecular and atomic contacts

    Get PDF
    We present a cluster-based density-functional approach to model charge transport through molecular and atomic contacts. The electronic structure of the contacts is determined in the framework of density functional theory, and the parameters needed to describe transport are extracted from finite clusters. A similar procedure, restricted to nearest-neighbor interactions in the electrodes, has been presented by Damle et al. [Chem. Phys. 281, 171 (2002)]. Here, we show how to systematically improve the description of the electrodes by extracting bulk parameters from sufficiently large metal clusters. In this way we avoid problems arising from the use of nonorthogonal basis functions. For demonstration we apply our method to electron transport through Au contacts with various atomic-chain configurations and to a single-atom contact of Al.Comment: 18 pages, 13 figure
    corecore