7,141 research outputs found
Boundary breathers in the sinh-Gordon model
We present an investigation of the boundary breather states of the
sinh-Gordon model restricted to a half-line. The classical boundary breathers
are presented for a two parameter family of integrable boundary conditions.
Restricting to the case of boundary conditions which preserve the \phi -->
-\phi symmetry of the bulk theory, the energy spectrum of the boundary states
is computed in two ways: firstly, by using the bootstrap technique and
subsequently, by using a WKB approximation. Requiring that the two descriptions
of the spectrum agree with each other allows a determination of the
relationship between the boundary parameter, the bulk coupling constant, and
the parameter appearing in the reflection factor derived by Ghoshal to describe
the scattering of the sinh-Gordon particle from the boundary.Comment: 16 pages amslate
Background field boundary conditions for affine Toda field theories
Classical integrability is investigated for affine Toda field theories in the
presence of a constant background tensor field. This leads to a further set of
discrete possibilities for integrable boundary conditions depending upon the
time-derivative of the fields at the boundary but containing no free parameters
other than the bulk coupling constant.Comment: 21 pages, harvma
The sine-Gordon model with integrable defects revisited
Application of our algebraic approach to Liouville integrable defects is
proposed for the sine-Gordon model. Integrability of the model is ensured by
the underlying classical r-matrix algebra. The first local integrals of motion
are identified together with the corresponding Lax pairs. Continuity conditions
imposed on the time components of the entailed Lax pairs give rise to the
sewing conditions on the defect point consistent with Liouville integrability.Comment: 24 pages Latex. Minor modifications, added comment
Semiclassical analysis of defect sine-Gordon theory
The classical sine-Gordon model is a two-dimensional integrable field theory,
with particle like solutions the so-called solitons. Using its integrability
one can define its quantum version without the process of canonical
quantization. This bootstrap method uses the fundamental propterties of the
model and its quantum features in order to restrict the structure of the
scattering matrix as far as possible. The classical model can be extended with
integrable discontinuities, purely transmitting jump-defects. Then the quantum
version of the extended model can be determined via the bootstrap method again.
But the outcoming quantum theory contains the so-called CDD uncertainity. The
aim of this article is to carry throw the semiclassical approximation in both
the classical and the quantum side of the defect sine-Gordon theory. The CDD
ambiguity can be restricted by comparing the two results. The relation between
the classical and quantum parameters as well as the resoncances appeared in the
spectrum are other objectives
Recommended from our members
The eyes of suckermouth armoured catfish (Loricariidae, subfamily Hypostomus): pupil response, lenticular longitudinal spherical aberration and retinal topography
The dilated, round pupils of a species of suckermouth armoured catfish (Liposarcus pardalis) constrict slowly on illumination (over 35-40 min) to form crescent-shaped apertures. Ray tracing of He-Ne laser beams shows that the lenses of a related species (Pterygoplichthys etentaculus), which also has a crescent-shaped pupil, are well corrected for longitudinal spherical aberration, suggesting that the primary purpose of the irregular pupil in armoured catfish is not to correct such aberration. It is suggested that the iris operculum may serve to camouflage the pupil of these substrate-dwelling species. An examination of the catfish retina shows the photoreceptors to be exclusively single cones interspersed with elongate rods and demonstrates the presence of multiple optic nerve head papillae. Two areas of high ganglion cell density, each side of a vertically oriented falciform process, provide increased spatial resolving power along the axes examining the substrate in front of and behind the animal
Purely transmitting integrable defects
Some aspects of integrable field theories possessing purely transmitting
defects are described. The main example is the sine-Gordon model and several
striking features of a classical field theory containing one or more defects
are pointed out. Similar features appearing in the associated quantum field
theory are also reviewed briefly.Comment: 6 pages, to appear in Proceedings of the XVth International
Colloquium on Integrable Systems and Quantum Symmetries, Prague, June 200
Boundary Reflection Matrix for Affine Toda Field Theory
We present one loop boundary reflection matrix for Toda field
theory defined on a half line with the Neumann boundary condition. This result
demonstrates a nontrivial cancellation of non-meromorphic terms which are
present when the model has a particle spectrum with more than one mass. Using
this result, we determine uniquely the exact boundary reflection matrix which
turns out to be \lq non-minimal' if we assume the strong-weak coupling \lq
duality'.Comment: 14 pages, Late
Measured performance of a tip-controlled, teetered rotor with an NACA 64 sub 3-618 tip airfoil
Tests were conducted on the Mod-O 100 kW Wind Turbine to determine the performance of a tip-controlled rotor having an NACA 64 sub-618 airfoil over the moveable outboard 30% of the blade, while operating at nominal rotor speeds of 21 and 31 rpm. Tests were conducted at two rotor speeds to assess the performance improvement which could be realized with 2-speed operation. Test data are compared with analytical predictions and concluding remarks are presented. The results indicate a clear performance improvement for the 2-speed operation
Sine-Gordon quantum field theory on the half-line with quantum boundary degrees of freedom
The sine-Gordon model on the half-line with a dynamical boundary introduced
by Delius and one of the authors is considered at quantum level. Classical
boundary conditions associated with classical integrability are shown to be
preserved at quantum level too. Non-local conserved charges are constructed
explicitly in terms of the field and boundary operators. We solve the
intertwining equation associated with a certain coideal subalgebra of
generated by these non-local charges. The corresponding
solution is shown to satisfy quantum boundary Yang-Baxter equations. Up to an
exact relation between the quantization length of the boundary quantum
mechanical system and the sine-Gordon coupling constant, we conjecture the
soliton/antisoliton reflection matrix and boundstates reflection matrices. The
structure of the boundary state is then considered, and shown to be divided in
two sectors. Also, depending on the sine-Gordon coupling constant a finite set
of boundary bound states are identified. Taking the analytic continuation of
the coupling, the corresponding boundary sinh-Gordon model is briefly
discussed. In particular, the particle reflection factor enjoys weak-strong
coupling duality.Comment: 15 pages, LaTeX file with amssymb, v2: references added, Comments
added, typos corrected. To appear in Nucl.Phys.
- …
