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1 Introduction

We recently proposed [1] a fully algebraic picture for a description of a Liouville integrable

defect. It was successfully exemplified in the case of the continuous non-linear Schrödinger

model (NLS), inducing us to now extend this procedure to the situation of the sine Gordon

model. It is worth noting that the investigation of integrable defects has been a quite

challenging problem, and there is a wealth of relevant articles in recent years at both

classical and quantum level [1]–[23, 24].

Let us first recall the general procedure. We restrict ourselves for the time being

to the case of a single defect. It is based on the construction of a suitable continuous

transfer matrix generating the Poisson-commuting Hamiltonians and their associated time-

component V of the continuous Lax pair: The continuous monodromy matrix is built as a

coaction:

T (L,−L, λ) = T+(L, x0, λ) L̃(λ) T
−(x0,−L, λ) (1.1)

The T± matrices are the monodromies of the differential operator d/dx + L(x) where L

is the continuous Lax matrix L(x) associated to the specific model, and L̃ is the defect

matrix. The continuous Lax matrix is assumed to obey a linear ultra-local Poisson algebra

parametrized by a non-dynamical skew-symmetric r-matrix. The defect L̃ is parametrized

by discrete dynamical variables initially assumed to be independent of the continuous

variables in L(x) (“off-shell” condition).

Note: it must be emphasized that dropping any or some of these restrictions considerably

complicates the issue even of building a bulk monodromy matrix: see e.g. [25] regarding

the problems related to non-local and/or skew symmetric r-matrices and [26, 28] for the

issue of finding the quadratic Poisson structure “derived” from a linear dynamical r-matrix

structure.

Within our restricted conditions the bulk monodromy operators then obey a well-

established quadratic Poisson algebra [29].
{

Ta(λ), Tb(µ)
}

=
[

rab(λ− µ), Ta(λ) Tb(µ)
]

(1.2)
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The same Poisson algebra is obeyed by the equal-point monodromy matrices:
{

Ta(L, x0, λ), Tb(L, x0, µ)
}

=
[

rab(λ− µ), Ta(L, x0, λ) Tb(L, x0, µ)
]

(1.3)

and
{

Ta(x0,−L, λ), Tb(x0,−L, µ)
}

=
[

rab(λ− µ), Ta(x0,−L, λ) Tb(x0,−L, µ)
]

. (1.4)

Liouville integrability is ensured from asking that the defect matrix L̃ obeys the same

quadratic Poisson algebra with the same r matrix as the bulk-interval monodromy oper-

ators T (x0,−L, λ) and T (x0,−L, λ), thereby imposing a strong constraint on the Poisson

structure of the dynamical variables parametrizing the defect. The Poisson-commuting hi-

erarchy of Hamiltonians is then obtained from expansion in λ−1 of the ln of the trace of the

monodromy matrix (1.1). Poisson commutation is formally guaranteed by the underlying

quadratic Poisson structure [29].

The time components of the Lax pair are then computed. They are evaluated sepa-

rately in the right bulk [x0, L] and the left bulk [−L, x0] (resp.V
+(x) and V

−(x)) and on

the defect point –from left and right (resp. Ṽ
+(x0) and Ṽ

−(x0)). It is then required that

V
(±)(x±0 ) = Ṽ

(±)(x0) in order to eliminate singular contributions arising in the zero curva-

ture condition written from the explicit Lax pair. This translates into sewing conditions

{C
(j)
± } across the defect relating the right and left values of the (j− 1)th derivatives of the

fields by functions of lower derivatives and the defect parameters. Sewing conditions are

thus derived as necessary conditions to allow identification of the Hamiltonian equations

of motion derived directly from H(i), with the equations derived from the zero curvature

condition of the Lax pair U, V
(i). They thus act as “regularizations” in the well-known

canonical [29, 30] procedure yielding H(i) and the associated V
(i) through the classical r-

matrix and (at least formally) guarantee the consistency of this procedure in the occurrence

of a point-like defect.

The sewing conditions must now be regarded as dynamical constraints of the sys-

tem, which in particular requires that the sub-manifold of the sewing conditions {C
(i)
± } be

invariant under the Hamiltonian action. This set of conditions reads:
{

H(i), C
(j)
±

}

belongs to the ideal generated by C
(i)
± . (1.5)

An important remark is required here. In general the sewing conditions do not Poisson-

close on each other and represent therefore second-class constraints. Such was indeed the

case in the NLS model. In this case the reduced phase space must be endowed with a

structure of Dirac brackets to become an actual symplectic manifold on which a Liouville-

integrable system can be defined. We recall that the Dirac brackets read (in a synthetic

formulation):
{

f, g
}

DB
≡
{

f, g
}

PB
+
∑

a,b

{f, Ca}M
−1
ab {Cb, g} (1.6)

where f, g are any functions of the dynamical variables; {}DB must be evaluated on the

constrained manifold; Ca denote the constraints and Mab is the matrix of Poisson brackets

of the constraints.
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It is now obvious from (1.6) that:

• if any two conserved charges, initially constructed off-shell, Poisson-commute at least

weakly on the constrained manifold: {Hi, Hj} ≈ 0;

• and if any such conserved charge preserves the constraints: {Hi, Ca} ≈ 0 on the

constrained manifold, then one finds:

{

Hi, Hj

}

DB
= 0, (1.7)

thereby guaranteeing Liouville integrability of the defect theory on the manifold of

sewing constraints endowed with the consistent Dirac bracket.

This procedure will now be applied to the sine-Gordon (SG) model, for which we shall

consider two distinct parametrizations of so-called type-II or dynamical defects defects (see

also [4, 10, 11]). We must immediately emphasize that this model provides an example

where the initial off-shell continuous “conserved” Hamiltonians do not Poisson commute,

but will be shown to weakly Poisson-commute once the sewing conditions are implemented,

thereby guaranteeing Liouville integrability of the reduced model. By contrast in the NLS

case the continuous Hamiltonians strongly (i.e. off-shell) Poisson-commuted. As seen above

this does not modify the conclusions on Liouville integrability on-shell.

Let us further comment on this potential breaking of Poisson-commutation for the off-

shell defect-plus-continuous Hamiltonians. The Poisson structure (1.2) guarantees at least

formally the Liouville integrability of the system under consideration. Poisson commuta-

tion of the trace of the logarithm of the monodromy matrix is formally an obvious direct

consequence of this quadratic r-matrix structure , but needs to be checked on any given ex-

ample, particularly for continuous plus discrete theories. Indeed, the conserved quantities

are explicitly obtained as coefficients of the expansion of the trace-log in formal series of

the spectral parameter, whereas the Poisson brackets are expressed as distribution-valued

objects (see the δ(x− y) terms). This superposition of formal series and distributions may

lead to subtleties in the evaluation of the continuous contributions close to the defect point

due to regularizations, and break formal integrability by some “classical anomaly”.

2 Preliminaries

A starting point in the description of classical integrable lattice models is the existence

of the Lax pair U, V. Define Ψ as being a solution of the following set of equations (see

e.g. [29])

∂Ψ

∂x
= U(x, t, λ)Ψ (2.1)

∂Ψ

∂t
= V(x, t, λ)Ψ (2.2)

U, V being in general n × n matrices with entries defined as functions of complex valued

dynamical fields, their derivatives, and the complex spectral parameter λ. Compatibility
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of the two aforementioned equations (2.1), (2.2) gives rise to the zero curvature condition

U̇(x, t)− V
′(x, t) +

[

U(x, t), V(x, t)
]

= 0, (2.3)

which provides the equations of motion of the system at hand.

As is well known the generating function of the local integrals of motion is given by

the expression

G = ln(trT (L,−L, λ)), (2.4)

where the monodromy matrix T is defined as,

T (L,−L, λ) = P exp
{

∫ L

−L

dx U(x)
}

, (2.5)

It is in fact a limit when x goes to L of a matrix-type solution of (2.1) normalized to be 1

at −L.

We now impose that the operator U satisfy the ultra-local Poisson structure described

by the linear algebraic relations

{

U1(x, λ), U2(y, µ)
}

=
[

r12(λ− µ), U(x, λ) + U2(y, µ)
]

δ(x− y) (2.6)

It is then straightforward to show that T satisfies the fundamental quadratic algebra:

{

T1(λ), T2(µ)
}

=
[

r12(λ− µ), T1(λ) T2(µ)
]

. (2.7)

r12(λ − µ) is the so-called classical r-matrix assumed here to be a non-dynamical skew-

symmetric solution of the classical Yang-Baxter equation.

We shall focus our investigation here on the sine-Gordon model. In this case the U

operator of the Lax pair is a 2× 2 matrix and is given by [31]:

U(x, t, u) =
β

4i
π(x, t)σz +

mu

4i
e

iβ

4
φσz

σye−
iβ

4
φσz

−
mu−1

4i
e−

iβ

4
φσz

σye
iβ

4
φσz

(2.8)

u ≡ eλ, σx,y,z are the 2 × 2 Pauli matrices, and the associated classical r-matrix in this

case is given by the familiar form [31]:

r(λ) =
β2

8 sinhλ

(

σz+1
2 coshλ σ−

σ+ −σz+1
2 coshλ

)

. (2.9)

Stating that the Lax operator U satisfies the linear Poisson algebra (2.6) is equivalent to

setting that φ, π are canonical conjugates, i.e.

{

φ(x), π(y)
}

= δ(x− y). (2.10)

Let us now apply the generic defect construction to the sine-Gordon model.
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3 The sine-Gordon model with integrable defect

In the presence of an integrable defect the monodromy matrix of the field theory is modified

(see also [1, 6, 13]), and takes the generic form

T (L,−L, λ) = T+(L, x+0 , λ) L̃(λ) T
−(x−0 ,−L, λ)

= P exp
{

∫ L

x+
0

dx U
+(x)

}

L̃(λ) P exp
{

∫ x−

0

−L

dx U
−(x)

}

(3.1)

Assuming that the defect Lax matrix L̃ also satisfies the quadratic Poisson algebra (2.7)

T given in (3.1) also satisfies (2.7).

Type-IIa defect. A first consistent parametrization of an integrable defect of the so-

called Type-II or dynamical will be considered in this section. The classical L̃ matrix takes

the form (type-IIa)

L̃(λ) =

(

eλV − e−λV −1 ā

a eλV −1 − e−λV

)

. (3.2)

Requiring that L̃ satisfies the algebraic relation (2.7), one extracts the following Poisson

relations between the defect fields:

{

V, ā
}

=
β2

8
V ā,

{

V, a
}

= −
β2

8
V a,

{

ā, a
}

=
β2

4
(V 2 − V −2) (3.3)

From these Poisson brackets one naturally extracts a cyclic variable C0 = V 2 + V −2 +

āa identified as the Casimir of a deformed sl2. This variable Poisson-commute with all

other dynamical quantities and can therefore be fixed to some particular value c0. We

shall nevertheless keep the redundant three-parameter expression for L̃ for reasons of form

simplicity in the explicit expressions.

Our first aim is to express the term of order u in U independently of the fields, after

applying a suitable gauge transformation [29]

T±(x, y, λ) = Ω±(x) T̃±(x, y) (Ω±(y))−1, Ω± = e
iβ

4
φ±σz

, (3.4)

The gauge transformed operator Ũ is expressed as:

Ũ
±(x, t, u) =

β

4i
f±σz +

mu

4i
σy −

mu−1

4i
e−

iβ

2
φ±σz

σye
iβ

2
φ±σz

(3.5)

where we define

f±(x, t) = π±(x, t) + φ±′

(x, t). (3.6)
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We consider the following convenient decomposition for T̃ , as |u| → ∞ [29],

T̃±(x, y, λ) = (1 +W±(x, λ)) eZ
±(x,y,λ) (1 +W±(y, λ))−1 (3.7)

W± is an off-diagonal matrix and Z± is purely diagonal. They are expanded as:

W± =
∞
∑

k=0

W±(k)

uk
, Z± =

∞
∑

k=−1

Z±(k)

uk
(3.8)

Note that T̃ naturally satisfies the gauged Lax equation:

∂T̃±

∂x
= Ũ

±(x, λ)T̃±(x, y, λ) (3.9)

Inserting expressions (3.7), (3.8) in (3.9) one identifies the matrices W±(k) and Z±(k).

More precisely, we end up with an equation for the off-diagonal matrix:

∂W±

∂x
+W±

Ũ
±

D − Ũ
±

DW
± +W±

Ũ
±

AW
± − U

±

A = 0 (3.10)

where the indices D, A denote the diagonal and anti-diagonal part of the Lax operator

Ũ
±. In the 2 × 2 case the above equations provide Riccati-type equations for the entries

of W±:

∂W±

ij

∂x
+W±

ij (Ũ
±

jj − Ũ
±

ii ) + (W±

ij )
2
Ũ
±

ji − Ũ
±

ij = 0, i 6= j ∈ {1, 2}. (3.11)

while the diagonal matrix, which provides essentially the integrals of motion as will become

transparent in what follows, obeys the following Lax equation:

∂Z±

jj

∂x
= Ũ

±

jj + Ũ
±

jiW
±

ij . (3.12)

Similarities with corresponding equations emerging in [14, 23, 24] from the inverse scat-

tering point of view are apparent as expected, given that one essentially solves the same

fundamental equations (2.1) (Wij → Γij). Of course Liouville integrability is guaranteed

within the present approach by construction (at least formally), whereas in the method-

ology of [14, 23, 24] only the conservation of the charges for a singled-out time-evolution

is shown through the zero curvature condition i.e. explicit use of the equations of motion.

We shall further comment on these issues later in the text, especially regarding the theory

in the presence of defects.

It is sufficient for our purposes here to identify only the first few terms of the expansions.

Indeed based on equation (3.9) we conclude (see also [29]):

W±(0) = iσ1, W±(1) = −
iβ

m
f±(x)σ1,

W±(2) =
2iβf±

′

m2
σ2 − i sin(βφ±) σ2 −

β2(f±)2

2im2
σ1. (3.13)

– 6 –
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We also need to identify the diagonal elements Z±(n). In particular from equation (2.1) we

extract the following expressions:

Z+(−1) = −
im(L− x0)

4
σ3, Z−(−1) = −

im(L+ x0)

4
σ3

Z+(1) =
m

4

(

−
∫ L

x+
0

dx W
+(2)
21 (x)

∫ L

x+
0

dx W
+(2)
12 (x)

)

−
m

4

(

−i
∫ L

x0
dx e−iβφ+

i
∫ L

x+
0

dx eiβφ
+

)

,

Z−(1) =
m

4

(

−
∫ x−

0

−L dx W
−(2)
21 (x)

∫ x−

0

−L dx W
−(2)
12 (x)

)

−
m

4

(

−i
∫ x−

0

−L dx e−iβφ−

i
∫ x−

0

−L dx eiβφ
−

)

. (3.14)

Notice that for −iu → ∞ the leading contribution, in the expansion in powers of u−1,

comes from the Z±

11 elements. This observation will be subsequently quite useful.

The first step in our investigation is the derivation of the associated local integrals of

motion. In particular, the energy and momentum in the presence of defect will be explicitly

derived. Let us first recall the generating function of the local integrals of motion

G(λ) = ln [trT+(L, x0, λ) L̃(x0, λ) T
−(x0, L, λ)] (3.15)

Schwartz boundary conditions are imposed at the end point of the system ±L. Recalling

also the ansatz for the monodromy matrices we conclude for the generating function:

G(λ) = ln tr
[

eZ
+(L,x0)(1 +W+(x0))

−1(Ω+(x0))
−1L̃(x0)Ω

−(x0)(1 +W−(x0))e
Z−(x0,−L)

]

(3.16)

Choosing to consider the −iu → ∞ behavior we take into account the leading contribution

for the Z±

11 terms, then the generating function takes the form:

G(λ) = Z+
11 + Z−

11 + ln
[

(1 +W+(x0))
−1(Ω+(x0))

−1L̃(x0)Ω
−(x0)(1 +W−(x0))

]

11

(3.17)

Expanding the latter expression in powers of u−1 we obtain the following:

G(λ) =

∞
∑

m=0

I(m)

um
. (3.18)

Recalling now the expression for the generating function of integrals of motion we conclude

that

I(1) = −
m

4i

∫ x−

0

−L

dx

(

−
β2

2m2
f−2(x)+cos(βφ−(x))

)

−
m

4i

∫ L

x+
0

dx

(

−
β2

2m2
f+2(x)+cos(βφ+(x))

)

+
i

D

(

e−
iβ

4
(φ+(x0)+φ−(x0))ā− e

iβ

4
(φ+(x0)+φ−(x0))a

)

+
β

2mD

(

f+(x0) + f−(x0)
)

A

(3.19)
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where we define:

D = e−
iβ

4
(φ+(x0)−φ−(x0))V + e

iβ

4
(φ+(x0)−φ−(x0))V −1,

A = e−
iβ

4
(φ+(x0)−φ−(x0))V − e

iβ

4
(φ+(x0)−φ−(x0))V −1. (3.20)

If we now perform the same expansion for λ → −∞, we basically end up with a similar

expression, by simply exploiting the fundamental symmetry of the monodromy matrix:

T (u−1, φ, π, V, a, ā) = T (−u, −φ, π, V −1, a, ā). (3.21)

More precisely, one (relatively easily. . . ) concludes that:

I(−1) =
m

4i

∫ x−

0

−L

dx

(

−
β2

2m2
f̂−2(x)+cos(βφ−(x))

)

−
m

4i

∫ L

x+
0

dx

(

−
β2

2m2
f̂+2(x) + cos(βφ+(x))

)

−
i

D

(

e
iβ

4
(φ+(x0)+φ−(x0))ā− e−

iβ

4
(φ+(x0)+φ−(x0))a

)

+
β

2mD

(

f̂+(x0) + f̂−(x0)
)

A

(3.22)

where we define

f̂±(φ, π) = f±(−φ, π). (3.23)

Of course any (even functional) combination of the quantities I(1), I(−1) can be picked as

one of the charges in involution. In particular the standard sine-Gordon Hamiltonian is

defined as:

H =
2im

β2
(I(1) − I(−1))

=

∫ x−

0

−L

dx
(1

2
(π−2(x) + φ−′2(x))−

m2

β2
cos(βφ−(x))

)

+

∫ L

x+
0

dx
(1

2
(π+2(x) + φ+′2(x))−

m2

β2
cos(βφ+(x))

)

−
4m

β2D
cos

β

4
(φ+(x0) + φ−(x0))

(

ā− a
)

+
2i

βD

(

φ+′

(x0) + φ−′

(x0)
)

A (3.24)

and we also identify the sine-Gordon momentum as:

P =
2im

β2

(

I(1) + I(−1)
)

=

∫ x−

0

−L

dx φ−′

(x)π−(x) +

∫ L

x+
0

dx φ+′

(x)π+(x)

+
4mi

β2D
sin

β

4
(φ+(x0) + φ−(x0))

(

ā+ a
)

+
2i

βD

(

π+(x0) + π−(x0)
)

A. (3.25)

Explicit computation of the Poisson bracket {H,P} now yields a number of non-zero

terms; we shall come back to this issue after deriving the sewing conditions in order to

apply the Dirac bracket formalism advocated in the Introduction.

– 8 –



J
H
E
P
1
1
(
2
0
1
2
)
0
0
8

The next step is the derivation of the time components of the associated Lax pairs.

Expressions of the time component V of the Lax pair are known (see e.g. [29]). The

generic expressions for the bulk left and right theories as well as the defect points are given

as [1, 32]:

V
+(x, λ, µ) = t−1(λ)tra

(

T+
a (A, x, λ)rab(λ− µ)T+

a (x, x0, λ)L̃a(x0, λ)T
−
a (x0,−A, λ)

)

V
−(x, λ, µ) = t−1(λ)tra

(

T+
a (A, x0, λ)L̃a(x0)T

−
a (x0, x, λ)rab(λ− µ)T−

a (x,−A, λ)
)

Ṽ
+(x0, λ, µ) = t−1(λ)tra

(

T+
a (A, x0, λ)rab(λ− µ)L̃a(x0, λ)T

−
a (x0,−A, λ)

)

Ṽ
−(x0, λ, µ) = t−1(λ)tra

(

T+
a (A, x0, λ)L̃a(x0, λ)rab(λ− µ)T−

a (x0,−A, λ)
)

. (3.26)

In order to identify the Lax pair associated to the Hamiltonian and momentum it is nec-

essary to formulate the expansion of V in both negative and positive powers of u.

The first order contribution in the u−1 expansion of the bulk V
± operator (we have

self-explanatorily set the second spectral parameter v ≡ eµ) reads:

V
±(1) =

β2

8

(

β

2m
σz(π± + φ±′

) + iv
(

σ−e−
iβ

2
φ±

− σ+e
iβ

2
φ±
)

)

(3.27)

The first order contribution in the u expansion reads:

V̂
±(1) =

β2

8

(

β

2m
σz(π± − φ±′

)− iv−1
(

σ−e
iβ

2
φ±

− σ+e−
iβ

2
φ±
)

)

(3.28)

Subtracting these two expressions and multiplying by −2im
β2 we obtain the time com-

ponent of the Lax pair associated to the Hamiltonian: (Ω± = e
iβ

4
φ±σz

)

V
±

H
=

β

4i
φ±′

σz +
vm

4i
Ω±σy(Ω±)−1 +

v−1m

4i
(Ω±)−1σyΩ± (3.29)

Adding now (3.27), (3.28), after multiplying with −2im
β2 , provides the time component of

the Lax pair associated to the momentum:

V
±

P
=

β

4i
π±σz +

vm

4i
Ω±σy(Ω±)−1 −

v−1m

4i
(Ω±)−1σyΩ± (3.30)

The next step is the derivation of the relevant Lax pairs for the defect point from the

left and the right, based on the expression (3.26). Indeed, after some cumbersome but

quite straightforward computations, and after we have defined:

w± = −
iβ

m
f±, ŵ± =

iβ

m
f̂±, (3.31)

we conclude from the expansion in powers of u−1:

Ṽ
+(1) =

iβ2

8
D−2σz

[

w+ + w− + e
iβ

2
φ−

V a+ e−
iβ

2
φ−

V −1ā
]

+
iβ2

4
D−1v

[

σ−e−
iβ

4
(φ++φ−)V −1 − σ+e

iβ

4
(φ++φ−)V

]

, (3.32)

– 9 –



J
H
E
P
1
1
(
2
0
1
2
)
0
0
8

whereas the expansion in powers of u leads to:

ˆ̃
V
+(1) = −

iβ2

8
D−2σz

[

ŵ+ + ŵ− − e
iβ

2
φ−

V ā− e−
iβ

2
φ−

V −1a
]

−
iβ2

4
D−1v−1

[

σ−e
iβ

4
(φ++φ−)V − σ+e−

iβ

4
(φ++φ−)V −1

]

(3.33)

Similarly, the corresponding expressions for Ṽ−(1), Ṽ
−(1) are given below:

Ṽ
−(1) =

iβ2

8
D−2σz

[

w+ + w− − e
iβ

2
φ+

V −1a− e−
iβ

2
φ+

V ā
]

+
iβ2

4
D−1v

[

σ−e−
iβ

4
(φ++φ−)V − σ+e

iβ

4
(φ++φ−)V −1

]

(3.34)

ˆ̃
V
−(1) = −

iβ2

8
D−2σz

[

ŵ+ + ŵ− + e
iβ

2
φ+

V −1ā+ e−
iβ

2
φ+

V a
]

−
iβ2

4
D−1v−1

[

σ−e
iβ

4
(φ++φ−)V −1 − σ+e−

iβ

4
(φ++φ−)V

]

. (3.35)

We are now in a position to apply the scheme elaborated in [1]. The first manifest

observation from the continuity conditions

Ṽ
+(1)(x0) → V

+(1)(x+0 ), x+0 → x0

Ṽ
−(1)(x0) → V

−(1)(x−0 ), x−0 → x0 (3.36)

(similar continuity conditions apply for the “hatted” quantities, but are omitted for brevity),

is that:

V = e
iβ

4
(φ+−φ−). (3.37)

and will be hereafter denoted as “first sewing condition S1 ”. Remember that from the

very beginning one has already fixed the Casimir C0 to some value c0 independently of

any sewing requirement. This can be seen as an “order zero condition S0 ” without any

dependance in the bulk variables and yields a first-class constraint Poisson-commuting with

all dynamical variables.

After imposing (3.37) the time components of the Lax pairs on the defect point take

the following simple expressions:

Ṽ
±(1) =

β2

8

(

β

4m
σz
(

π+ + φ+′

+ π− + φ−′

)±
iσz

4
M+ iv

(

σ−e−
iβ

2
φ±

− σ+e
iβ

2
φ±
)

)

(3.38)

and the first term in the u expansion provides:

ˆ̃
V
± =

β2

8

(

β

4m
σz
(

π+ − φ+′

+ π− − φ−′

)±
iσz

4
M̂− iv−1

(

σ−e
iβ

2
φ±

− σ+e−
iβ

2
φ±
)

)

(3.39)

where we define:

M = e−
iβ

4
(φ++φ−)ā+ e

iβ

4
(φ++φ−)a

M̂ = e
iβ

4
(φ++φ−)ā+ e−

iβ

4
(φ++φ−)a (3.40)
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Continuity conditions on the Lax pair as also described in (3.36) give rise to the following

sewing conditions on the defect point x0 associated to the momentum and the Hamiltonian

respectively:

S2 : π+(x0)− π−(x0) =
im

β
cos

β

4
(φ+(x0) + φ−(x0))

(

a+ ā
)

S′
2 : φ+′

(x0)− φ−′

(x0) =
m

β
sin

β

4
(φ+(x0) + φ−(x0))

(

ā− a
)

(3.41)

the prime denotes the derivative with respect to x.

It is instructive to point out that comparison of the extracted charges (3.24), (3.25),

and the latter equations (3.41) with similar results obtained for instance in [13, 14] reveal

manifest discrepancies. We shall further comment on this matter in the discussion section.

Consistency of the sewing conditions S1, S2, S′
2 can now be checked by computing

their Poisson brackets with the first two Hamiltonians H,P. Indeed one gets:
{

H, S1

}

= −
iβ

4
(π+(x0)− π−(x0))S1 +

iβ

4
S2V + o(D − 2)

{

P, S1

}

= −
iβ

4
(φ+′

(x0)− φ−′

(x0))S1 +
iβ

4
S′
2V + o(D − 2) (3.42)

We recall that on-shell D ≈ 2 ; A ≈ 0.

Consider now the Poisson brackets of H, P with S2, S′
2. One easily obtains that they

are given by expressions of the following form:
{

P, S2

}

=
(

π+′

(x0)−π−′

(x0)
)

F
(

π+(x0)+π−(x0), φ
+′

(x0)+φ−′

(x0), φ
+(x0), φ

−(x0), V, a, ā
)

{

H, S2

}

=
(

φ+′′

(x0)−φ−′′

(x0)
)

G
(

π+(x0)+π−(x0), φ
+′

(x0)+φ−′

(x0), φ
+(x0), φ

−(x0), V, a, ā
)

(3.43)

where F and G are given functions to be computed specifically. Poisson brackets with

S′
2 are given by similar expressions exchanging H and P. Note that (contrary to the

non-linear Schroedinger case) no term proportional to the singular contribution δ(0) arise,

they fully cancel in the Poisson brackets. It is therefore to be expected that the finite

terms on the r.h.s. of both PB’s will yield the third sewing conditions S3, S
′
3 which will

respectively take the form (expected from general arguments) (π+′

(x0) − π−′

(x0)) = −F

and (φ+′′

(x0)− φ−′′

(x0) = −G. Explicit derivation of these sewing conditions from higher

terms in the expansion of the

V operators is technically quite cumbersome but we conjecture that they will coincide with

the r.h.s. of (3.43).

Let us now reconsider the Poisson bracket {H,P}. It turns out from explicit compu-

tations that one has in fact:
{

H, P
}

≈ 0, (3.44)

i.e. the Poisson bracket vanishes provided that the constraints S1, S2, S′
2 be satisfied.
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Assuming that the Hamiltonians H and P weakly preserve all constraints (as already

established for S1 and conjectured for S2, S
′
2 ) we deduce that the momentum and Hamil-

tonian Dirac commute. Our construction of Type IIa defect is thus compatible with a

statement of Liouville-integrability on-shell.

Type-IIb defect. Having completed the basic computations regarding the type-IIa de-

fect we now introduce the L̃ matrix relevant to the type-IIb defect. In fact, the new defect

matrix arises via a simple matrix multiplication L̃(x0, λ) → σx L̃(x0, λ):

L̃(λ) =

(

a eλV −1 − e−λV

eλV − e−λV −1 ā

)

. (3.45)

where L̃ is given in (3.2). It is clear that the defect algebra (3.3) is valid in this case as

well due to the property that σx ⊗ σx commutes with the r-matrix. Following the same

process as in the case of type-IIa defect we are able to extract the first integrals of motion.

Recalling the expression for the generating function of integrals of motion, introduced in

the previous example, we conclude that

I(1) = −
m

4i

∫ x−

0

−L

dx

(

−
β2

2m2
f−2(x)+cos(βφ−(x))

)

−
m

4i

∫ L

x+
0

dx

(

−
β2

2m2
f+2(x)+cos(βφ+(x))

)

+
i

D̂

(

e
iβ

4
(φ+(x0)−φ−(x0))ā+ e−

iβ

4
(φ+(x0)−φ−(x0))a

)

−
β

2mD̂

(

f+(x0)− f−(x0)
)

Â

(3.46)

where we define:

D̂ = e
iβ

4
(φ+(x0)+φ−(x0))V − e−

iβ

4
(φ+(x0)+φ−(x0))V −1,

Â = e
iβ

4
(φ+(x0)+φ−(x0))V + e−

iβ

4
(φ+(x0)+φ−(x0))V −1. (3.47)

If we now perform the same kind of expansion but for λ → −∞, we end up with a similar

expression as in the Type IIa case, by simply exploiting the fundamental symmetry of the

monodromy matrix (3.21):

I(−1) =
m

4i

∫ x−

0

−L

dx

(

−
β2

2m2
f̂−2(x)+cos

(

βφ−(x)
)

)

−
m

4i

∫ L

x+
0

dx

(

−
β2

2m2
f̂+2(x)+cos

(

βφ+(x)
)

)

+
i

D̂

(

e−
iβ

4
(φ+(x0)−φ−(x0))ā+ e

iβ

4
(φ+(x0)+φ−(x0))a

)

−
β

2mD̂

(

f̂+(x0)− f̂−(x0)
)

Â

(3.48)

The corresponding Hamiltonian then reads as:

H =
2im

β2

(

I(1) − I(−1)
)

=

∫ x−

0

−L

dx

(

1

2
(π−2(x) + φ−′2(x))−

m2

β2
cos(βφ−(x))

)

+

∫ L

x+
0

dx

(

1

2
(π+2(x) + φ+′2(x))−

m2

β2
cos(βφ+(x))

)

+
4mi

β2D̂
sin

β

4

(

φ+(x0)− φ−(x0)
)

(a− ā)−
2i

βD̂

(

φ+′

(x0)− φ−′

(x0)
)

Â (3.49)
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and we may also identify the momentum as:

P =
2im

β2

(

I(1) + I(−1)
)

=

∫ x−

0

−L

dx φ−′

(x)π−(x) +

∫ L

x+
0

dx φ+′

(x)π+(x)

−
4m

β2D̂
cos

β

4
(φ+(x0)− φ−(x0)) (ā+ a)−

2i

βD̂

(

π+(x0)− π−(x0)
)

Â. (3.50)

Similarly we may identify the time components of the Lax pairs associated to the

charges I(1), I(−1). From the expansion in powers of u−1 we have:

Ṽ
+(1) =

iβ2

8
D̂−2σz

[

w− − w+ + e
iβ

2
φ−

V a+ e−
iβ

2
φ−

V −1ā
]

+
iβ2

4
D̂−1v

[

σ+e
iβ

4
(φ+−φ−)V −1 + σ−e−

iβ

4
(φ+−φ−)V

]

(3.51)

whereas the expansion in powers of u leads to:

ˆ̃
V
+(1) =

iβ2

8
D̂−2σz

[

ŵ+ − ŵ− + e
iβ

2
φ−

V ā+ e−
iβ

2
φ−

V −1a
]

+
iβ2

4
D̂−1v−1

[

σ+e−
iβ

4
(φ+−φ−)V + σ−e

iβ

4
(φ+−φ−)V −1

]

(3.52)

Similarly, the corresponding expressions for Ṽ−(1), Ṽ
−(1) are given below:

Ṽ
−(1) =

iβ2

8
D̂−2σz

[

w+ − w− − e−
iβ

2
φ+

V −1a− e
iβ

2
φ+

V ā
]

+
iβ2

4
D̂−1v

[

σ+e−
iβ

4
(φ+−φ−)V −1 + σ−e

iβ

4
(φ+−φ−)V

]

(3.53)

ˆ̃
V
−(1) =

iβ2

8
D̂−2σz

[

ŵ+ − ŵ− − e−
iβ

2
φ+

V −1ā− e
iβ

2
φ+

V a
]

+
iβ2

4
D̂−1v−1

[

σ−e−
iβ

4
(φ+−φ−)V −1 + σ+e

iβ

4
(φ+−φ−)V

]

. (3.54)

The first manifest observation from the continuity conditions

Ṽ
+(1)(x0) → V

+(1)(x+0 ), x+0 → x0

Ṽ
−(1)(x0) → V

−(1)(x−0 ), x−0 → x0 (3.55)

(similar continuity conditions apply for the “hatted” quantities as well), is that:

S̃1 : V = ie−
iβ

4
(φ++φ−). (3.56)

After imposing (3.56) the time components of the Lax pairs on the defect point take the

following simple expressions:

Ṽ
±(1) =

β2

8

(

±
β

4m
σz
(

π+ + φ+′

− π− − φ−′
)

+
σz

4
M̃+ iv

(

σ−e−
iβ

2
φ±

− σ+e
iβ

2
φ±
)

)

(3.57)
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and the first term in the u expansion provides:

ˆ̃
V
±(1) =

β2

8

(

±
β

4m
σz
(

π+ − φ+′

− π− + φ−′
)

+
σz

4
ˆ̃
M− iv−1

(

σ−e
iβ

2
φ±

− σ+e−
iβ

2
φ±
)

)

(3.58)

where we define:

M̃ = −e
iβ

4
(φ+−φ−)ā+ e−

iβ

4
(φ+−φ−)a

ˆ̃
M = e−

iβ

4
(φ+−φ−)ā− e

iβ

4
(φ+−φ−)a (3.59)

Continuity conditions on the Lax pair as also described in (3.55) give rise to the following

sewing conditions on the defect point x0 associated to the momentum and the Hamiltonian

respectively:

S̃2 : φ+′

(x0) + φ−′

(x0) =
m

β
cos

β

4
(φ+(x0)− φ−(x0))

(

a− ā
)

S̃′
2 : π+(x0) + π−(x0) = −

im

β
sin

β

4
(φ+(x0)− φ−(x0))

(

ā+ a
)

(3.60)

The energy and momentum are again in weak involution that is:
{

H, P
}

≈ 0, (3.61)

provided that the constraints S̃1, S̃2, S̃′
2 are satisfied.

Similar consistency conditions as (3.42), (3.43) will occur between the charges and the

sewing conditions. They shall be omitted here however for the sake of brevity. Hence,

assuming that all higher sewing conditions are also weakly conserved by the momentum

and Hamiltonian we have established that the momentum and Hamiltonian Dirac commute

and the Type IIb defect is Liouville integrable on-shell.

Equations of motion. To extract the associated equations of motion for the left and

right bulk theories as well as the defect point one needs to employ the zero curvature

condition expressed as:

U̇
±(x, t)− V

±′

(x, t) +
[

U
±(x, t),V±(x, t)

]

= 0 x 6= x0 (3.62)

As usual the dot denotes derivative with respect to t.

On the defect point in particular the zero curvature condition is formulated as (this is

also transparent when discussing the continuum limit of discrete theories (see e.g. [1])

˙̃L(x0) = Ṽ
+(x0)L̃(x0)− L̃(x0)Ṽ

−(x0), (3.63)

and describes explicitly the jump occurring across the defect point.

The equations of motion are obtained via the zero curvature conditions as described

above or (equivalently thanks to the sewing conditions) via the Hamiltonian equations i.e.

φ̇± =
{

H, φ±

}

, π̇± =
{

H, π±

}

,

ė =
{

H, e
}

, e ∈
{

a, ā, V
}

(3.64)
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bear also in mind that
{

π±, e
}

=
{

φ±, e
}

= 0. (3.65)

For the left and right bulk theories the familiar equations of motion for the sine-Gordon

model arise

φ̈±(x, t)− φ±′′

(x, t) +
m2

β
sin(βφ±(x, t)) = 0 (3.66)

On the defect point the time evolution of the defect degrees of freedom for the type-IIa

defect are found to be:

ȧ = −
m

2D2
A a cos

β

4
(φ+ + φ−)

(

ā− a
)

−
m

D
cos

β

4
(φ+ + φ−)

(

V 2 − V −2
)

−
βi

D2
a
(

φ+′

+ φ−′
)

(3.67)

˙̄a =
m

2D2
A ā cos

β

4
(φ+ + φ−)

(

ā− a
)

−
m

D
cos

β

4
(φ+ + φ−)

(

V 2 − V −2
)

+
iβ

D2
ā
(

φ+′

+ φ−′
)

(3.68)

V̇ =
m

2D
V cos

(

β

4
(φ+ + φ−)

)

(

a+ ā
)

. (3.69)

Similarly, the time evolution of the degrees of freedom for the type-IIb defect are

gives as:

ȧ =
im

2D̂2
a Â sin

β

4
(φ+ − φ−)

(

a− ā
)

−
im

D̂
sin

β

4
(φ+ − φ−)

(

V 2 − V −2
)

−
iβ

D̂2
a
(

φ+′

− φ−′
)

(3.70)

˙̄a = −
im

2D̂2
ā Â sin

β

4
(φ+ − φ−)−

im

D̂
sin

β

4
(φ− − φ−)

(

V 2 − V −2
)

+
iβ

D̂2
ā
(

φ+′

− φ−′
)

(3.71)

V̇ =
im

2D̂
sin

β

4
(φ+ − φ−) V

(

a+ ā
)

(3.72)

Let us end our construction of the sine Gordon defect theory with a few comments

and discussions on some tricky issues which have arisen in the course of our presentation.

4 Discussion

Comparison of our expressions for the charges, for both defects IIa and IIb, with the

corresponding findings appearing in e.g. [13, 14, 23, 24] leads in this case to discrepancies.

We believe this to be due to the basic differences in the particular methodologies adopted.

We have already dwelt on the off-shell→ on-shell approach which we advocate. By contrast

in [13, 14, 23, 24], the degrees of freedom associated to the defect are not present as

independent dynamical variables in the whole construction, but they are a priori related
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to the fields of the right and left theories and their derivatives. This is one key difference

compared to our approach, where only at the very end are the “off-shell” degrees of freedom

of the defect related to the left and right limit of bulk dynamical variables, and this

specifically through the sewing conditions.

Moreover and even more to the point, in the course pursued in [14, 23, 24] the con-

servation of the charges is shown via the zero curvature condition. This means that the

conservation of charges is proved only for a single Hamiltonian evolution (out of the hi-

erarchy of such) corresponding to the particular choice of the V operator. However no

underlying Poisson structure is available hence the involution of the charges cannot be

proven which would make Liouville integrability manifest.

Let us be more specific: In [14, 23, 24] one observes that in the presence of defects

the construction of the defect matrix, and the proof of the conservation of the charges are

based on two fundamental equations:

˙̃L(x0) = Ṽ
+(x0) L̃(x0)− L̃(x0) Ṽ

−(x0) (4.1)

L̃′(x0) = U
+(x0) L̃(x0)− L̃(x0) U

−(x0). (4.2)

Equation (4.1) is a “time” evolution of the L̃(x0) matrix, and arises alternatively in our

Hamiltonian description from application of the second conserved Hamiltonian using the

canonical Poisson structure (see equation (3.64)).

Equation (4.2) is a second “time” evolution of the L̃(x0) matrix, and should nat-

urally emerge alternatively in our Hamiltonian description from application of the first

conserved Hamiltonian using the canonical Poisson structure (see 3.63). Remember that in

the Hamiltonian approach to Liouville integrability all ‘times” associated to the respective

Hamiltonians of the hierarchy are equivalent.

It follows that such equations as (4.1), (4.2) are automatically present in our deriva-

tion but only as consequences of the basic procedure. The reciprocal statement may not

be true. Compatibility of two “time” evolutions a priori does not guarantee the exis-

tence of a Poisson structure which would render these two evolutions Hamiltonian. Were

such a Poisson structure built, it only guarantees the Poisson commutation of the two

corresponding Hamiltonians but not the existence of higher conserved Poisson commuting

Hamiltonians, unless a Magri-type algorithm [26, 27] allows to build a recursion operator

from the two Hamiltonians and the Poisson structure, and hence to deduce the hierarchy

of Poisson structure dual to the postulated hierarchy of hamiltonians. To formulate in

another language: Equation (4.2) can be interpreted indeed as a Bäcklund transformation

(see e.g. [23, 24]) acting on the defect configuration by “space translation”;1 these trans-

formations do act on the space of configurations as a group of dressing transformations;

but no Lie-Poisson structure of this group is manifest.

This second formulation thus yields a weaker form of integrability, which may be char-

acterized as “Lax integrability” or “algebraic integrability” or even “Lagrangian integrabil-

ity”. And as we have now seen, Liouville-integrable defects are always Lax-integrable; the

1We wish to thank the referee for pointing out this interpretation to us
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reciprocal is not true and there are more Lax-integrable defects than Liouville-integrable

defects. The discrepancies occurring in the SG case are thus not unexpected.

To conclude on this point: in our approach integrability is by construction ensured

even in the presence of the defect, due to the fact that the defect matrix L̃ satisfies the

same fundamental quadratic algebra, as the one the monodromy matrices T± satisfies.

One more key ingredient is apparent via the proposed methodology, that is the systematic

construction of the time component of the Lax pair, which eventually leads to non-trivial

gluing condition among the degrees of freedom of the defect and the right-left fields and

their derivatives. The whole process is consistent and is based on first principles, hence

no further assumptions or ad hoc formulations are required. Moreover, various consistency

checks have been performed (see relevant previous works [1, 22]) especially in comparison

with the corresponding discrete description [22] to guarantee the validity of the adopted

process.

Note that if the defect is movable then possibly there exists some Bäcklund transfor-

mation associated, although this is not a priori clear. Nevertheless, still the question of the

relevant Poisson structure is raised. Another issue raised is about dressing and its compat-

ibility with the Poisson structure, in other words is the dressing/Bäcklund transformation

group a Lie Poisson group? This is true usually in the bulk case, but not obvious in the

defect case.

A final comment is of order. As indicated in the discussion the Poisson commutation of

the bulk-plus-defect Hamiltonians is not verified off-shell in the sine Gordon case (contrary

to the NLS case). We expect that this is due to the occurrence, in the derivation of Poisson

brackets between these off-shell defect Hamiltonians, of Poisson structures which are for

all instance and purposes distributions (delta terms). Thus the need for regularizations

arises (for instance by discretization, see e.g. [1, 22]), hence the possibility of hampering

integrability off-shell.

One may expect that this would also occur on-shell, but it does not seem to be the case

at least on the SG example. This may in fact be intrinsically related to the definition of

the sewing conditions as being the analytic conditions which allow to exactly identify the

Hamiltonian-induced equations of motion with the Lax equations, once the Lax partner V

is built according to the fundamental pattern a la Semenov-Tjan-Shanskii [30].

What may happen systematically in this procedure (and possibly only when ultra-local

Poisson structures are involved) is that if breaking of integrability occurs off-shell, it can

only occur through precisely these singular terms, which are killed by the sewing conditions

and Liouville integrability is therefore reestablished on-shell.
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[20] M. Mintchev, É. Ragoucy and P. Sorba, Reflection transmission algebras,

J. Phys. A 36 (2003) 10407 [hep-th/0303187] [INSPIRE].
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