8 research outputs found

    Fifty years of porphyria at the University of Cape Town

    Get PDF
    The porphyrias are a group of disorders resulting from defective haem biosynthesis. One form, variegate porphyria, is common in South Africa as a result of a founder effect. Over the past 50 years, the University of Cape Town Faculty of Health Sciences has built and maintained an international reputation for excellence in the field of porphyria. The porphyria group is respected for its research and for its accumulated experience in the management of these disorders. Equally important has been the comprehensive and holistic care offered to patients with porphyria, and to their families

    Variegate porphyria in South Africa, 1688 - 1996 - new developments in an old disease

    Get PDF
    Variegate porphyria, an autosomal dominant inherited trait resulting in decreased activity of protoporphyrinogen oxidase, the penuttimate haem biosynthetic enzyme, is characterised clinically by photosensitive skin disease and a propensity to acute neurovisceral crises. The disease has an exceptionally high frequency in South Africa,owing to a founder effect. The specific mutation in the protoporphynnogen oxidase gene sequence which represents this founder gene has been identified. Genetic diagnosis is therefore now possible in families in whom the gene defect is known. However, the exact nature and degree of activity of the porphyria can only be determined by detailed quantitative biochemical analysis of excreted porphyrins. The relative contributions of the acute attack and the skin disease to the total disease burden of patients with variegate porphyria is not static, and in South Africa there have been significant changes over the past 25 years, with fewer patients presenting with acute attacks, leaving a greater proportion to present with skin disease or to remain asymptomatic with the diagnosis being made in the laboratory. The most common precipitating cause of the acute attack of VP is administration of porphyrinogenic drugs. Specific suppression of haem synthesis with intravenous haem arginate is the most useful treatment of a moderate or severe acute attack. Although cutaneous lesions are limited to the sun-exposed areas, management of the skin disease of VP remains inadequate

    Crystal structure of protoporphyrinogen oxidase from Myxococcus xanthus and its complex with the inhibitor acifluorfen

    Get PDF
    Protoporphyrinogen IX oxidase, a monotopic membrane protein, which catalyzes the oxidation of protoporphyrinogen IX to protoporphyrin IX in the heme/chlorophyll biosynthetic pathway, is distributed widely throughout nature. Here we present the structure of protoporphyrinogen IX oxidase from Myxococcus xanthus, an enzyme with similar catalytic properties to human protoporphyrinogen IX oxidase that also binds the common plant herbicide, acifluorfen. In the native structure, the planar porphyrinogen substrate is mimicked by a Tween 20 molecule, tracing three sides of the macrocycle. In contrast, acifluorfen does not mimic the planarity of the substrate but is accommodated by the shape of the binding pocket and held in place by electrostatic and aromatic interactions. A hydrophobic patch surrounded by positively charged residues suggests the position of the membrane anchor, differing from the one proposed for the tobacco mitochondrial protoporphyrinogen oxidase. Interestingly, there is a discrepancy between the dimerization state of the protein in solution and in the crystal. Conserved structural features are discussed in relation to a number of South African variegate porphyria-causing mutations in the human enzyme

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes

    C-Terminal Deletions in the ALAS2 Gene Lead to Gain of Function and Cause X-linked Dominant Protoporphyria without Anemia or Iron Overload

    No full text
    All reported mutations in ALAS2, which encodes the rate-regulating enzyme of erythroid heme biosynthesis, cause X-linked sideroblastic anemia. We describe eight families with ALAS2 deletions, either c.1706-1709 delAGTG (p.E569GfsX24) or c.1699-1700 delAT (p.M567EfsX2), resulting in frameshifts that lead to replacement or deletion of the 19–20 C-terminal residues of the enzyme. Prokaryotic expression studies show that both mutations markedly increase ALAS2 activity. These gain-of-function mutations cause a previously unrecognized form of porphyria, X-linked dominant protoporphyria, characterized biochemically by a high proportion of zinc-protoporphyrin in erythrocytes, in which a mismatch between protoporphyrin production and the heme requirement of differentiating erythroid cells leads to overproduction of protoporphyrin in amounts sufficient to cause photosensitivity and liver disease

    Microarray analysis of gene expression profiles in the rat kidney demonstrates a local inflammatory response induced by cardiopulmonary bypass

    No full text
    <p>CONTEXTCardiopulmonary bypass (CPB) is a commonly used technique in cardiac surgery but is associated with acute, transient, renal dysfunction that has a negative impact on long-term survival.OBJECTIVETo unravel the molecular pathogenesis of renal injury following CPB.DESIGNTo obtain insight into the pathogenesis of renal dysfunction following CPB, we performed a microarray analysis of renal gene expression in the rat.SETTINGUniversity Medical Centre Groningen.INTERVENTIONRats underwent CPB or a sham procedure for 60min and were sacrificed at 60min, 1 and 5 days after the procedure.MAIN OUTCOME MEASURESRenal gene expression profile as determined by microarray analysis.RESULTSExpression of 420 genes was significantly altered in CPB compared to the sham procedure, and in 407 genes, this was evident in the acute phase (60min) following CPB. Gene ontology analysis revealed 28 of these genes were involved in inflammatory responses, with high expression of genes downstream of mitogen-activated protein-kinase (MAP-kinase) signalling pathways. Potent inducers identified are from the interleukin-6 cytokine family that consists of interleukin-6 and oncostatin M (OSM), which signal through the gp130-cytokine receptor complex. The plasma concentration of interleukin-6 was hugely increased by CPB as measured by ELISA. Expression of genes downstream of these signalling pathways that lead to production of chemokines, adhesion molecules and molecules involved in coagulative pathways, was upregulated.CONCLUSIONCPB induces an acute and local inflammatory response in the kidney, which might contribute to renal injury. The signalling pathways involved identified by gene expression analysis may represent pharmacological targets to limit renal injury following CPB.</p>
    corecore