1,950 research outputs found

    Composition of Jupiter irregular satellites sheds light on their origin

    Get PDF
    Irregular satellites of Jupiter with their highly eccentric, inclined and distant orbits suggest that their capture took place just before the giant planet migration. We aim to improve our understanding of the surface composition of irregular satellites of Jupiter to gain insight into a narrow time window when our Solar System was forming. We observed three Jovian irregular satellites, Himalia, Elara, and Carme, using a medium-resolution 0.8-5.5 micro m spectrograph on the National Aeronautics and Space Administration (NASA) Infrared Telescope Facility (IRTF). Using a linear spectral unmixing model we have constrained the major mineral phases on the surface of these three bodies. Our results confirm that the surface of Himalia, Elara, and Carme are dominated by opaque materials such as those seen in carbonaceous chondrite meteorites. Our spectral modeling of NIR spectra of Himalia and Elara confirm that their surface composition is the same and magnetite is the dominant mineral. A comparison of the spectral shape of Himalia with the two large main C-type asteroids, Themis (D 176 km) and Europa (D 352 km), suggests surface composition similar to Europa. The NIR spectrum of Carme exhibits blue slope up to 1.5 microm and is spectrally distinct from those of Himalia and Elara. Our model suggests that it is compositionally similar to amorphous carbon. Himalia and Elara are compositionally similar but differ significantly from Carme. These results support the hypotheses that the Jupiter irregular satellites are captured bodies that were subject to further breakup events and clustered as families based on their similar physical and surface compositions

    Coupled swelling and large strain model for hydrogels: application to the nucleus pulposus of the intervertebral disc

    Get PDF
    The main constituents of the nucleus puposus , the centrl gelatinous part of the intervertebral disc, are water and a solid extracellular matrix of macromolecules. Based on this observation, the nucleus pulposus can be seen as a gel-like material in wich swelling - due to the diffusion of the fluid molecules into the macromolecular network - and large strain elasticity, induced by the macromollecular chains, occur. In recent literature, many autors have been interested in describing such a coupled deformation-diffusion problem for gels. Most of the tim, these works where formulated with respect to the dry configuration of the material. Howevver, for the nucleus pulposus, the dru configuration does not exist. Thus, the formulation of the deformation-diffusion problem should be modified in order to consider a reference configuration, wich is undeformed and unconstrained (but already swollen). The theoretical aspects of the derivation of this coupled deformation-diffusion model is proposed. Then, this model is numerically implemented in the finite element commercial software ABAQUS. The state of equilibrium are investigated on simple homogeneous examples. Finally, the himan nucleus pulposus of the intervertebral disc is chosen as a representative complex crample of application for this approach. The associated annulus fibrosus is modelled using an anisotropic hyperelastic material law

    Genetic distance predicts trait differentiation at the subpopulation but not the individual level in eelgrass, Zostera marina.

    Get PDF
    Ecological studies often assume that genetically similar individuals will be more similar in phenotypic traits, such that genetic diversity can serve as a proxy for trait diversity. Here, we explicitly test the relationship between genetic relatedness and trait distance using 40 eelgrass (Zostera marina) genotypes from five sites within Bodega Harbor, CA. We measured traits related to nutrient uptake, morphology, biomass and growth, photosynthesis, and chemical deterrents for all genotypes. We used these trait measurements to calculate a multivariate pairwise trait distance for all possible genotype combinations. We then estimated pairwise relatedness from 11 microsatellite markers. We found significant trait variation among genotypes for nearly every measured trait; however, there was no evidence of a significant correlation between pairwise genetic relatedness and multivariate trait distance among individuals. However, at the subpopulation level (sites within a harbor), genetic (FST) and trait differentiation were positively correlated. Our work suggests that pairwise relatedness estimated from neutral marker loci is a poor proxy for trait differentiation between individual genotypes. It remains to be seen whether genomewide measures of genetic differentiation or easily measured "master" traits (like body size) might provide good predictions of overall trait differentiation

    Les espèces exotiques envahissantes de Nouvelle-Calédonie

    Get PDF

    Impact of the capping layers on lateral confinement in InAs/InP quantum dots for 1.55 um laser applications srudied by magneto-photoluminescence.

    Get PDF
    We have used magnetophotoluminescence to study the impact of different capping layer material combinations (InP, GaInAsP quaternary alloy, or both InP and quaternary alloy) on lateral confinement in InAs/InP quantum dots (QDs) grown on (311)B orientated substrates. Exciton effective masses, Bohr radii, and binding energies are measured for these samples. Conclusions regarding the strength of the lateral confinement in the different samples are supported by photoluminescence at high excitation power. Contrary to theoretical predictions, InAs QDs in quaternary alloy are found to have better confinement properties than InAs/InP QDs. This is attributed to a lack of lateral intermixing with the quaternary alloy, which is present when InP is used to (partially) cap the dots. The implications of the results for reducing the temperature sensitivity of QD lasers are discussed. ©2005 American Institute of Physic

    A mathematical model for mechanotransduction at the early steps of suture formation

    Get PDF
    Growth and patterning of craniofacial sutures are subjected to the effects of mechanical stress. Mechanotransduction processes occurring at the margins of the sutures are not precisely understood. Here, we propose a simple theoretical model based on the orientation of collagen fibres within the suture in response to local stress. We demonstrate that fibre alignment generates an instability leading to the emergence of interdigitations. We confirm the appearance of this instability both analytically and numerically. To support our model, we use histology and synchrotron x-ray microtomography and reveal the fine structure of fibres within the sutural mesenchyme and their insertion into the bone. Furthermore, using a mouse model with impaired mechanotransduction, we show that the architecture of sutures is disturbed when forces are not interpreted properly. Finally, by studying the structure of sutures in the mouse, the rat, an actinopterygian (\emph{Polypterus bichir}) and a placoderm (\emph{Compagopiscis croucheri}), we show that bone deposition patterns during dermal bone growth are conserved within jawed vertebrates. In total, these results support the role of mechanical constraints in the growth and patterning of craniofacial sutures, a process that was probably effective at the emergence of gnathostomes, and provide new directions for the understanding of normal and pathological suture fusion

    Detection of selective sweeps in structured populations : a comparison of recent methods

    Get PDF
    This work was supported by the Marie-Curie Initial Training Network INTERCROSSING (European Commission FP7). OEG was further supported by the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland). Date of Acceptance: 25/08/2015Identifying genomic regions targeted by positive selection has been a longstanding interest of evolutionary biologists. This objective was difficult to achieve until the recent emergence of Next Generation Sequencing, which is fostering the development of large-scale catalogs of genetic variation for increasing number of species. Several statistical methods have been recently developed to analyze these rich datasets but there is still a poor understanding of the conditions under which these methods produce reliable results. This study aims at filling this gap by assessing the performance of genome-scan methods that consider explicitly the physical linkage among SNPs surrounding a selected variant. Our study compares the performance of seven recent methods for the detection of selective sweeps (iHS, nSL, EHHST, xp-EHH, XP-EHHST, XPCLR and hapFLK). We use an individual-based simulation approach to investigate the power and accuracy of these methods under a wide range of population models under both hard and soft sweeps. Our results indicate that XPCLR and hapFLK perform best and can detect soft sweeps under simple population structure scenarios if migration rate is low. All methods perform poorly with moderate to high migration rates, or with weak selection and very poorly under a hierarchical population structure. Finally, no single method is able to detect both starting and nearly completed selective sweeps. However, combining several methods (XPCLR or hapFLK with iHS or nSL) can greatly increase the power to pinpoint the selected region.PostprintPeer reviewe
    corecore