
Molecular Ecology 
	  

	   1	  

 1	  

 2	  

Detection of selective sweeps in structured populations: a comparison of 3	  

recent methods  4	  

 5	  

Alexandra I. Vatsiou1,2, Eric Bazin1, Oscar E. Gaggiotti1,2 6	  

 7	  

1Laboratoire d'Ecologie Alpine, UMR CNRS 5553, Université Joseph Fourier, Grenoble, France  8	  

2Scottish Oceans Institute, East Sands, University of St Andrews, St Andrews,  9	  

  KY16 8LB, UK  10	  

*Corresponding author: E-mail: oeg@st-andrews.ac.uk 11	  

keywords: positive selection, haplotype structure, genome scan methods, accuracy 12	  

 13	  

 14	  

  15	  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/73346504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Molecular Ecology 
	  

	   2	  

 16	  

 Abstract  17	  

Identifying genomic regions targeted by positive selection has been a longstanding 18	  

interest of evolutionary biologists. This objective was difficult to achieve until the recent 19	  

emergence of Next Generation Sequencing, which is fostering the development of large-scale 20	  

catalogs of genetic variation for increasing number of species. Several statistical methods have 21	  

been recently developed to analyze these rich datasets but there is still a poor understanding of 22	  

the conditions under which these methods produce reliable results. This study aims at filling this 23	  

gap by assessing the performance of genome-scan methods that consider explicitly the physical 24	  

linkage among SNPs surrounding a selected variant. Our study compares the performance of 25	  

seven recent methods for the detection of selective sweeps (iHS, nSL, EHHST, xp-EHH, XP-26	  

EHHST, XPCLR and hapFLK). We use an individual-based simulation approach to investigate 27	  

the power and accuracy of these methods under a wide range of population models under both 28	  

hard and soft sweeps. Our results indicate that XPCLR and hapFLK perform best and can detect 29	  

soft sweeps under simple population structure scenarios if migration rate is low. All methods 30	  

perform poorly with moderate to high migration rates, or with weak selection and very poorly 31	  

under a hierarchical population structure. Finally, no single method is able to detect both starting 32	  

and nearly completed selective sweeps. However, combining several methods (XPCLR or 33	  

hapFLK with iHS or nSL) can greatly increase the power to pinpoint the selected region.  34	  

 35	  

  36	  
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Introduction  37	  

Population geneticists and evolutionary biologists have a longstanding interest in understanding 38	  

the ecological and genetic mechanisms that allow species to adapt to local environmental 39	  

conditions. The recent advent of Next Generation Sequencing (NGS) (Shendure & Ji 2008) and 40	  

the high density SNP arrays it generates has allowed rapid advances in this field and has fostered 41	  

the emergence of the population genomics approach (Luikart et al. 2003). This new paradigm is 42	  

focused on the use of genome-wide data to distinguish between locus-specific effects (mainly 43	  

selection but also mutation, and recombination) and genome-wide effects such as genetic drift. It 44	  

has proven particularly useful to detect signatures of selection, and has been used to uncover 45	  

genes involved in local adaptation, disease susceptibility, resistance to pathogens, and other 46	  

phenotypic traits of interest to plant and animal breeders.  47	  

At the genetic level, local adaptation involves a process whereby directional selection 48	  

induced by local environmental conditions will favor the spread of genetic variants associated 49	  

with beneficial phenotypic traits. If selection is strong at the level of an individual locus the 50	  

selected variant will increase in frequency. Additionally, selection will modify the pattern of 51	  

diversity around the selected locus through genetic hitchhiking (Barton 2000; Smith & Haigh 52	  

1974). This process, known as a selective sweep, has been extensively studied using models of 53	  

isolated populations (Hermisson & Pennings 2005; Pennings & Hermisson 2006a, b; Kim & 54	  

Nielsen 2004; Sabeti et al. 2002; Smith & Haigh 1974; Voight et al. 2006) but much less studied 55	  

under structured population scenarios. In this latter case, analyses focused on either, an 56	  

universally favoured mutation that spreads from its deme of origin to other demes (Barton 2000; 57	  

Bierne 2010; Slatkin & Wiehe 1998) or on a scenario where the new selected variant is favoured 58	  
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in one part of the species range but counter selected in the other half (Bierne 2010). However, 59	  

there is a third scenario still poorly understood but frequently assumed by studies of local 60	  

adaptation, particularly in humans. Under this scenario, a selected variant is favoured in one part 61	  

of the species range and is neutral elsewhere (e.g. lactase persistence, skin pigmentation, high 62	  

altitude adaptation; Jeong & Di Rienzo 2014). 63	  

Several so-called “genome-scan methods’ have been proposed for the detection of 64	  

positive selection from dense SNP maps. The most widely used and thoroughly evaluated type of 65	  

methods is based on Lewontin and Krakauer (1973) approach and is focused on single-locus FST 66	  

(Beaumont & Balding 2004; Beaumont & Nichols 1996; Foll & Gaggiotti 2008). These methods 67	  

implicitly or explicitly assume that SNPs are physically unlinked and are most effective when 68	  

neutral genetic differentiation is low (Price et al. 2008) and/or when the selective sweep is close 69	  

to fixation (Pickrell et al. 2009). Other methods are specifically aimed at detecting selective 70	  

sweeps by focusing on the distribution of genetic variation along a chromosome within a 71	  

population when selection is acting, as predicted by the theory of genetic hitchhiking (Fay & Wu 72	  

2000; Kim & Stephan 2002; Nielsen et al. 2005). These methods are applicable to isolated 73	  

populations and their behavior has been extensively studied (Jensen et al. 2005, Zang et al. 2005, 74	  

Zeng et al. 2007). 75	  

A third type of genome scan methods considers explicitly the physical linkage among 76	  

SNPs surrounding a selected variant, either by focusing on patterns of long-range haplotype 77	  

homozygosity (Sabeti et al. 2002; Voight et al. 2006) or by modelling the effect of linkage on 78	  

multilocus genetic differentiation (Chen et al. 2010). These methods are more recent and their 79	  

properties have not been extensively investigated. Moreover, although they are focused on either 80	  

a single population (Ferrer-Admetlla et al. 2014; Sabeti et al. 2002; Voight et al. 2006) or on 81	  



Molecular Ecology 
	  

	   5	  

pairs of populations (Chen et al. 2010; Fariello et al. 2013; Sabeti et al. 2007), they are being 82	  

used to study structured populations consisting of many subpopulations without a clear 83	  

understanding of how migration and complex population structure may affect their power and 84	  

error rates. Thus, the objective of the present study is to carry out a thorough evaluation of the 85	  

performance of these methods under various scenarios of population structure. We focus mainly 86	  

on the case where the selected variant is beneficial in part of the species range and neutral 87	  

elsewhere, as it is the underlying scenario envisaged by many recent studies of adaptation (Foll et 88	  

al. 2014; Hancock et al. 2008; Lao et al. 2007). Additionally we consider both hard and soft 89	  

selective sweeps. These two scenarios differ in the origin of the selected variant. In a hard 90	  

selective sweep the favoured allele appears through de novo mutation while in a soft sweep it is 91	  

already segregating at low frequency in the population (standing genetic variation) or it arises 92	  

from recurrent mutations (Hermisson & Pennings 2005; Pennings & Hermisson 2006a, b; 93	  

Pritchard et al. 2010).  94	  

In the present analysis we compare the performance of seven recent methods to detect 95	  

selective sweeps. We incorporate in the analysis, methods that were developed to study a single 96	  

population, a pair of populations or multiple populations. We explain in detail the ability of each 97	  

method to capture the signal of selection left by both hard and soft sweeps under different 98	  

scenarios of structured populations and a range of parameter values (migration and selection). 99	  

The principle is to examine these methods on the same simulated datasets and draw conclusions 100	  

about how the different model parameters affect their performance as described by power and 101	  

false discovery rate. The goal of this analysis is to guide scientists in the choice of the methods 102	  

that is better suited for their biological model. 103	  

 104	  
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Material and Methods 105	  

Genome Scan Methods 106	  

We focus our study on seven methods for which software is readily available:  Integrated 107	  

Haplotype Score (iHS) (Voight et al. 2006), Number of Segregating sites by Length (nSL) 108	  

(Ferrer-Admetlla et al. 2014), Extended Haplotype-based Homozygosity Score Test (EHHST) 109	  

(Zhong et al. 2010), Cross Population Extended Haplotype Homozygosity (xp-EHH) (Sabeti et 110	  

al. 2007), Cross-population extended haplotype-based homozygosity score test (xp-EHHST) 111	  

(Zhong et al. 2011), Cross population Composite Likelihood Ratio (XPCLR) (Chen et al. 2010) 112	  

and hapFLK (Fariello et al. 2013). They all use SNP data but propose different statistics to detect 113	  

selection. In what follows we will highlight their main differences but we also include more 114	  

technical details about all these methods in SI. 115	  

The methods we evaluate use different summary statistics that try to capture different 116	  

genetic patterns consistent with the action of positive selection. We can distinguish three groups 117	  

of methods:  118	  

(i) Methods based on the decay of haplotype homozygosity as a function of recombination 119	  

distance (iHS, nSL and xp-EHH):  the underlying rationale of these methods is that selected 120	  

alleles will have unusually long range linkage disequilibrium given their frequency in the 121	  

population.  122	  

(ii) Methods based on the decay of genotype homozygosity around a target SNP (EHHST and xp-123	  

EHHST): the underlying rationale is similar to that of the previous group but in this case 124	  

homozygosity is measured in terms of mean homozygosity across all individuals in the sample 125	  
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instead of homozygosity of a region with respect to all chromosomes in the sample as in the 126	  

previous group.  127	  

(iii) Methods based on the extent of multilocus genetic differentiation among populations around 128	  

a target SNP (XPCLR and hapFLK): the underlying rationale is that genetic differentiation 129	  

around a selected variant will be much larger than expected under drift but instead of using 130	  

single-locus measures of differentiation it calculates differentiation for all SNPs within a 131	  

window centered around the target SNP.  132	  

Another important difference between methods lies in whether or not they require phased 133	  

data and information on the ancestral/derived status at each segregating site. XPCLR is the only 134	  

method that does not have these requirements. Finally, one last difference among methods that 135	  

needs to be highlighted refers to the number of populations they consider. iHS, nSL and EHHST 136	  

are focused on a single population, xp-EHH, xp-EHHST, XPCLR consider two populations, 137	  

while hapFLK considers an arbitrary number of populations.  138	  

 139	  

Calculation of p values 140	  

The first step in the comparison of several methods is to define a common framework for 141	  

assessing significance, which then allows us to calculate false positive and false negative rates as 142	  

well as power. We used two alternative approaches:  143	  

(a) From the empirical distribution of test scores: in this case, we calculate the test statistic for all 144	  

SNPs in the sample. Then using the empirical distribution of test scores, we consider as 145	  

potentially adaptive all the loci with scores falling in the outlying 5% of the distribution. In the 146	  

context of a simulation study, we know the truth and, therefore, we can readily identify true 147	  
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and false positives across all synthetic samples so as to calculate error rates and power of each 148	  

method. 149	  

(b) From a distribution of tests scores generated by neutral simulations: in this case, we generate a 150	  

large number of synthetic datasets assuming a particular demographic history (deemed 151	  

appropriate for the species under study) and calculate the statistic scores for a target SNP. The 152	  

distribution of test scores is then used as the null distribution and any loci with a test score 153	  

falling in the outlying 5% of the distribution is considered potentially selected. In order to 154	  

compare he performance of the different methods, we also carried out simulations under 155	  

different selection scenarios and then pooled neutral and selected replicates to estimate power 156	  

at various false positive rates. These results are then presented as ROC curves obtained using 157	  

the R package “ROCR” (Sing et al. 2005).  158	  

The most widespread approach to assess significance when analysing real data is based on 159	  

the empirical distribution (approach a). The reason for this is that in most cases we do not know 160	  

with certainty the true demographic history of the species under study. Thus, we present the 161	  

results of this procedure in the main text and the results of the second procedure in the 162	  

supplementary information.  163	  

 164	  

Simulations 165	  

We generated synthetic data using SimuPOP (Peng & Amos 2008; Peng et al. 2011), a general-166	  

purpose, individual-based simulation platform for forward-in-time population genetics modelling. 167	  

The Python scripts used to carry out the simulations are available at GitHub 168	  

(https://github.com/alexvat/simulations).  169	  
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Initially, we simulated three different population structure scenarios, an island model 170	  

(Wright 1990), a stepping stone model (Kimura 1953) and a dichotomous population fission 171	  

model that leads to a hierarchical island structure (Figure S1). In these cases, we considered four 172	  

diploid demes, each of constant effective population size Ne  = 2500. Thus, total population size 173	  

was 10,000. Table 1 presents a summary of the parameters that were used in the simulations. In 174	  

the case of the island and the stepping-stone models, every individual migrates to another deme 175	  

with probability m (0.05, 0.01 or 0.008). In the case of the hierarchical model, migration between 176	  

demes within the same group (continent) was higher than migration between demes in different 177	  

groups (see Figure S1c). In this latter scenario, we start at t = 0 with a single population (Z with 178	  

10,000 individuals). At t = 100 generations, it splits into two subpopulations (Y, Z of size 5,000 179	  

individuals each) and at t = 300 each of the 2 subpopulations (Y, Z) split into two other 180	  

subpopulations ((X, Y) and (W, Z) respectively), resulting in four subpopulations at t > 300.  181	  

Following previous analyses (Hanchard et al. 2006; Zhong et al. 2010; Zhong et al. 182	  

2011), we considered L=101 bi-allelic SNPs located in the same chromosome. The recombination 183	  

rate was ρ = 1.5 (= 4Νer) so that r = 0.00375 cM/kb leading to a fixed distance of 4kb between 184	  

loci. For all the scenarios, neutral loci shared the same mutation rate (10-8 per generation).  185	  

For each demographic model, we considered two selection scenarios, a hard sweep and a 186	  

soft sweep. Under a hard sweep, new mutations are easily lost due to genetic drift so that large 187	  

selection coefficients are needed to minimize stochastic loss. In our case we used s =0.1 (2Nes = 188	  

500), 0.08 (2Nes =400) and 0.01 (2Nes =50). On the other hand, a soft sweep acts upon standing 189	  

genetic variation so selection does not need to be very strong to overcome stochastic loss in most 190	  

simulations. In our case, we used s = 0.05 (2Nes=250). For the simple structured population cases 191	  

(island, stepping-stone and hierarchical model with a total of four subpopulations each), we 192	  
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assumed that a selected variant at locus 50 (i.e. the middle of the genomic region) was favoured 193	  

in only one deme and that it was neutral in all other demes. We assumed a co-dominant selection 194	  

model where fitness of the homozygotes for the ancestral allele is 1, fitness of heterozygotes is (1 195	  

+ s/2), and fitness of homozygotes for the derived allele is (1 + s).  196	  

For all scenarios, we used an initialization procedure that samples allele frequencies from 197	  

an island model at migration-mutation-drift equilibrium. More precisely, all loci were initialized 198	  

at the beginning of the simulations, t0 = 0, by sampling the allele frequencies of each locus from a 199	  

Beta distribution with parameters a = 4Nem*p and b = 4Nem*(1-p), where p is the frequency in a 200	  

migrant pool, which was derived from real human SNP data from non-coding regions, m is the 201	  

migration rate and Ne the effective population size (Wright 1931). We started selection after a 202	  

burn-in (t1) that allowed the system to reach migration-mutation-drift equilibrium. In the case of 203	  

the island model the burn-in period was very short (50 generations) compared to the stepping 204	  

stone model (100 generations) and the hierarchical model (500 generations). Figures S2-S4 in 205	  

supplementary information show the steady state reached in terms of equilibrium allele 206	  

frequencies and LD under each scenario.  In the case of hard sweeps, locus 50 was monomorphic 207	  

at t0 and all throughout the burn-in period. At t1, once populations were at equilibrium, a single 208	  

copy of a new advantageous mutation (the derived allele) was introduced at this locus in deme Y 209	  

only. All the simulations were carried out until the selected locus was nearly fixed in the selected 210	  

population. We took samples of populations at different times points where the selected allele 211	  

frequency exceed a given threshold (0.1, 0.2, ..., ~1) in order to study its influence on the 212	  

performance of the methods.  213	  

In the case of the soft sweep from standing variation, the selected variant was already 214	  

segregating in the population before the onset of selection. More precisely, we assume that the 215	  
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allele became beneficial after an environmental change, but was neutral under the previous 216	  

conditions. At t = t0, we set the frequency of the selected allele at locus 50 in the migrant pool to 217	  

0.02, 0.1, 0.2 or 0.4. At t = t1, when selection started, the average allele frequency of the selected 218	  

variant over the replicates remained unchanged at these respective values. We generated 1000 219	  

replicates for each of these scenarios. 220	  

 221	  

Statistical analysis  222	  

Performance of each method was evaluated using the two methods described above which 223	  

henceforth are referred to as the empirical distribution (method a) and simulated distribution 224	  

(method b) approaches. The results are similar for both approaches so here we focus on the 225	  

empirical distribution approach while the simulated distribution approach is further described in 226	  

supplementary information.  227	  

Given that the aim of all methods is to identify genomic regions under selection and not 228	  

necessarily to uncover a specific advantageous mutation, we considered that a method succeeded 229	  

at detecting selection if at least one of the SNPs in a window bounded between SNP 45 and SNP 230	  

55 was identified as selected (i.e. a window spanning 20kb upstream and 20kb downstream the 231	  

selected locus). Outlier SNPs outside of this window were considered as False Positives. The 232	  

choice of a 40kb window (10 SNPs) was decided after investigating the distribution of the scores 233	  

produced by each method around the selected variant (see Fig. S5) and ensures that the signature 234	  

of selection is restricted to the window, and, therefore, does not lead to wrong estimations of 235	  

power and FDR. The statistical significance threshold for all tests was defined as the 5% outliers 236	  

considering the whole region of 101 loci. FDR is rarely measured. Indeed, most previous studies 237	  
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assess performance based on neutral simulations that only allow for the calculation of power and 238	  

FPR. However, the application of these methods involve multiple testing and, therefore, we 239	  

measure error rates in terms of FDR at several time points to better characterize the stage of the 240	  

selective sweep (i.e. initial, intermediate or nearly completed) at which each method performs 241	  

best.  242	  

 243	  

Results  244	  

We first compared the performance of six methods (iHS (Voight et al. 2006), nSL (Ferrer-245	  

Admetlla et al. 2014), EHHST (Zhong et al. 2010), xp-EHH (Sabeti et al. 2007), xp-EHHST 246	  

(Zhong et al. 2011) and XPCLR (Chen et al. 2010)) for the hard sweep scenario under the island 247	  

(Wright 1990) and stepping-stone (Kimura 1953) models, the two most well known population 248	  

models. We then selected the methods that were the most efficient under these conditions and we 249	  

compared them under the hierarchical island model. In this case, we also included hapFLK 250	  

(Fariello et al. 2013) in the comparison because it is specifically developed for this scenario. 251	  

Next, we selected the methods that were the most efficient under this latter scenario and subjected 252	  

them to further scrutiny, using data generated from soft sweep scenarios and more complex 253	  

stepping stone models. The results are similar for the two approaches used to compare methods, 254	  

therefore, we present the results of the empirical distribution approach here and those of the 255	  

simulated distribution approach in the supplementary information. 256	  

 257	  

Hard Sweep  258	  

Local selective sweeps under simple population structure models 259	  
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Figure 1 presents the results for a hard sweep under the island model for five different scenarios: 260	  

i) m=0.008, s=0.01 (2Nes=50), ii) m=0.008, s=0.08 (2Nes=400), iii) m=0.008, s=0.1 (2Nes=500), 261	  

iv) m=0.01, s=0.1 (2Nes=500) and v) m=0.05, s=0.1 (2Nes=500). Both EHHST and XP-EHHST 262	  

performed poorly under all scenarios (Fig. 1e,g), exhibiting very low power and high FDR (Fig. 263	  

S6c,e) regardless of the allele frequency of the selected variant. The performance of the four other 264	  

methods (iHS, nSL, xp-EHH and XPCLR) varies depending on the allele frequency of the 265	  

favoured variant in the selected population (Y) and the different parameters tested (migration rate 266	  

and selection coefficient).  267	  

 As expected, when selection is strong (2Nes=500 or 400) and migration is low (m=0.008 268	  

or 2Nes=50), the four above-mentioned methods performed quite well at least at one stage of the 269	  

selective sweep (initial, intermediate or nearly completed; Figure 1). More precisely, iHS and 270	  

nSL detected sweeps for which the selected variant was still at low frequency (~0.1 to ~0.3). The 271	  

performance of xp-EHH increased slowly as the frequency of the selected allele in the selected 272	  

population increases and it has a power of ~ 100% when the selected locus is close to fixation 273	  

(Allele Frequency: AF = ~0.9). XPCLR behaved in a similar way but the performance increased 274	  

sharply first and remained high until the selected locus approached fixation. The performance of 275	  

XPCLR was the highest of all methods when the allele frequency was intermediate to high (AF = 276	  

0.3, 0.9) but extremely poor when it was low (AF = 0.1,0.2), in which case iHS and nSL were 277	  

better methods.  278	  

Migration has a strong detrimental effect on the performance of all methods (Fig. 1). 279	  

Indeed, when migration was high (m=0.05 per generation), the performance of iHS, nSL, xp-280	  

EHH and XPCLR was poor. When the selected variant is favoured in one population but neutral 281	  

elsewhere, migration has a strong homogenizing effect. Therefore, the performance of iHS and 282	  
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nSL decreased because the selected population was swamped by haplotypes carrying the counter 283	  

selected variants. Thus, the frequency of the haplotype containing the selected variant decreased 284	  

and the genetic signal of selection was weakened. On the other hand, the performance of xp-EHH 285	  

and XPCLR decreased because the non-selected populations were swamped by the haplotype 286	  

containing the beneficial allele. Thus, with high migration (m=0.05) the beneficial allele spread 287	  

much faster (than with m=0.01) and the differentiation in frequency of the selected variant 288	  

between the selected and non-selected populations decreased sharply (Figs. 1a, b). These results 289	  

hold for both the island and the stepping-stone model (Fig. S7). 290	  

Under an isolation-by-distance scenario the choice of the two populations to include in 291	  

xp-EHH and XPCLR analyses can affect their performance. To investigate this, we examined the 292	  

performance of XPCLR, the method with highest power in the previous scenarios, as a function 293	  

of the distance between the population undergoing selection and the “neutral” ones for the 294	  

scenario with m=0.01 and 2Nes=500. Figure 2 shows that the larger the distance between the 295	  

selected and non-selected populations, the lower the power of XPCLR was for intermediate 296	  

values of the allele frequency of the selected variant. This may seem counterintuitive because 297	  

larger distance leads to reduced migration and results obtained for the island model suggest that 298	  

weak migration facilitates the detection of the selection signal. However, we note that XPCLR is 299	  

based on the multilocus genetic differentiation between a selected and a non-selected population. 300	  

More precisely, it compares the multilocus differentiation expected around a selected variant with 301	  

that expected around a neutral variant (c.f. eq. 6 in Chen et al. 2010). As distance between the 302	  

two populations increases, the neutral multilocus differentiation increases strongly and, therefore, 303	  

the difference in genetic differentiation between neutral and selected regions decreases. This 304	  

behaviour is similar to that observed for genome-scan methods based on FST (Price et al. 2008). 305	  
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We further studied whether or not selection could be detected when the selected population was 306	  

not included in the analysis. Interestingly, the selected region is detected when the selected 307	  

variant has reached intermediate to high frequencies in the population right next to a selected one. 308	  

Thus, in the case of a nearly completed selective sweep, it is possible to wrongly conclude that 309	  

selection is acting upon one of the two populations when this is not really the case. However, the 310	  

power of the method decreases sharply when the selected population is not adjacent to one of the 311	  

two populations included in the analysis.  312	  

In the case of the hierarchical island model (Fig. 3), we focus on five methods (iHS, nSL, 313	  

xp-EHH, XPCLR and hapFLK) discarding EHHST and XP-EHHST because they performed very 314	  

poorly under the simple population structure scenarios considered above (island and stepping 315	  

stone model with four populations). For the two-populations tests (xp-EHH and XPCLR), we 316	  

investigated the power of the methods both when the selected and non-selected sampled 317	  

populations were in the same group (continent) and when they were in different groups. Note that 318	  

migration between populations in the same group is higher (m = 0.02) than between those in 319	  

different groups  (m = 0.01). The overall pattern of performance as a function of allele frequency 320	  

of the selected variant is similar to that observed under the simpler spatial structure scenarios.  321	  

However, the baseline power of all methods is largely reduced. More specifically, the power of 322	  

iHS and xp-EHH was decreased to ~70%, with an FDR ~30% for the allele frequencies at which 323	  

they performed optimally under the simpler spatial scenarios. On the other hand, the performance 324	  

of XPCLR remained high with power ~90% and FDR lower than 20%. Nevertheless, such high 325	  

performance is achieved for a narrower range of allele frequencies (0.6, 0.7) than for the simple 326	  

spatial structure scenarios tested before (AF: 0.3-0.9). As it was expected, when comparing 327	  

populations from the same geographic group (Y-X), the power of the methods was more strongly 328	  
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reduced (~10% for xp-EHH and ~20% for XPCLR) than when populations belonged to different 329	  

groups. HapFLK exhibited the best performance for a wide range of allele frequencies but was 330	  

outperformed by xp-EHH and XPCLR for very high allele frequencies.  331	  

 332	  

Local selective sweeps in a heterogeneous environment 333	  

 We explore a scenario akin to that considered by previous studies of genetic sweeps in 334	  

structured populations (e.g. Bierne 2010). More precisely, we simulated a stepping-stone scenario 335	  

with a large number of populations (52) undergoing a hard selective sweep in a heterogeneous 336	  

environment where the new mutation is beneficial in half of the species range and detrimental in 337	  

the other half. We simulated 52 populations with 500 individuals each, a genomic region 338	  

comprising 101 loci with a recombination rate of 0.00375cM/kb per generation, a selection 339	  

coefficient of 0.05 (2Nes=50) and a migration rate of 0.05 per generation. Locus 50 was initially 340	  

fixed for allele 0 in all populations and after equilibrium a de novo advantageous mutation was 341	  

introduced in the far left deme. The new mutant was favoured in habitat 1 (populations 1 to 25) 342	  

and was counter selected in habitat 2 (populations 26 to 50) (Fig. 4b). To avoid computational 343	  

burden due to the very large number of populations studied here, we evaluated performance using 344	  

100 simulations instead of the 1000 used for the simpler scenarios. However, as shown in Figure 345	  

S5, this reduced number of replicates does not have an impact on the outcome of the analysis. All 346	  

methods were tested but we only present results for XPCLR and hapFLK because all other 347	  

methods have negligible power under this scenario. 348	  

 The power of hapFLK was almost maximal (99.9%) but its error rate was very high too 349	  

(FDR 43.3%). All 50 populations except the boundary ones were included in the hapFLK 350	  

analysis. However, in the case of XPCLR, which can only analyse two populations at a time, we 351	  
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focused on pairs of populations and evaluated the effect of distance between them on the 352	  

performance of the test. Figure 4a shows the XPCLR results for analyses using population 1 (i.e. 353	  

the far left population) as objective and each one of the other populations as reference. Results 354	  

were obtained after 40,000 generations since the appearance of the mutation. The results show 355	  

that XPCLR can detect selection only when the reference population is near the boundary 356	  

between the two habitats (a similar pattern is observed when using demes 13 or 25 as objective 357	  

populations; Fig. S8). The FDR follows the inverse pattern of the power and this holds true for all 358	  

the populations in habitat 1 (Fig. S8). XPCLR does not perform well when populations from the 359	  

same habitat are compared because after 40,000 generations the sweep is complete in all demes 360	  

belonging to habitat 1 (Fig. 4b) and multilocus differentiation around the selected allele has 361	  

disappeared (Fig. 4c). When the reference population is in habitat 2 and far from the boundary 362	  

with habitat 1, XPCLR does not perform well either, as the genetic differentiation of the neutral 363	  

background increases strongly with distance from the objective population (Fig. 4d) and this 364	  

decreases the power to detect selection using multilocus differentiation. Thus, we conclude that 365	  

caution is needed when using XPCLR to study scenarios involving genetic clines or secondary 366	  

contact zones. Nevertheless, it is worth mentioning that this method may be useful to identify the 367	  

transition zone were the change in selection regime is observed.  368	  

 369	  

Soft Sweep 370	  

In the case of soft sweeps from standing variation, the most crucial parameter influencing the 371	  

power of the methods is expected to be the Initial Allele Frequency (IAF) of the selected variant. 372	  

To investigate this, we examined the power of the methods at the following IAF of the selected 373	  
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variant: 0.4, 0.2, 0.1 and 0.02. Given that the methods did not show sufficient performance with a 374	  

high migration rate (m=0.05) under the hard sweep scenario, we examined their behaviour for the 375	  

soft sweep with a migration rate of 0.01. The results for the island model are presented in Figure 376	  

5 and are identical to those of the stepping stone model, which are presented in Figure S9. The 377	  

power of iHS and nSL was dramatically reduced (to less than 50%) under all three scenarios 378	  

tested. The performance of xp-EHH was good at high allele frequencies (AF=0.9) before fixation, 379	  

as in the case of the hard sweep. This holds true for all the different initial allele frequencies that 380	  

were tested. The performance of XPCLR was good for intermediate and high allele frequencies of 381	  

the selected locus before fixation, particularly for IAF: 0.2, 0.1 and 0.02. 382	  

Next we investigated the performance of xp-EHH, XPCLR and hapFLK under a 383	  

hierarchical island model undergoing a soft sweep. The power of all methods drops substantially, 384	  

being in general below ≈40%, while their FDR is very high (Fig. S10). As opposed to iHS and 385	  

xp-EHH that are based on long range haplotype homozygosity, XPCLR and hapFLK are based on 386	  

multilocus genetic differentiation and, therefore, their performance under this scenario might be 387	  

improved in the absence of migration. To investigate this possibility, we carried out simulations 388	  

of this same scenario without migration. The results show that performance of both methods, but 389	  

especially of hapFLK, improves particularly for high frequencies of the selected variant (Fig. 390	  

S11).   391	  

 392	  

Discussion 393	  

This study aimed at assessing the performance of recent statistical methods that are being used to 394	  

detect selective sweeps in structured populations. These methods focus on multi-locus signatures 395	  
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of selection that include information on linkage disequilibrium. Although they were originally 396	  

developed to study isolated populations or two population scenarios, they are being applied to all 397	  

kinds of structured populations (e.g.. island, stepping-stone, hierarchical). Thus, our objective 398	  

was to investigate how violations to the underlying model influences their power and error rates.  399	  

We compared the performance of seven genome-scan methods (iHS, nSL, EHHST, XP-400	  

EHHST, xp-EHH, XPCLR and hapFLK) under subdivided population structures. Some of them 401	  

such as iHS and xp-EHH have already been widely used (Andersen et al. 2012; Park et al. 2012; 402	  

Qanbari et al. 2011) while the others, such as XPCLR, nSL and hapFLK, are quite popular but 403	  

fairly recent and have not yet been extensively scrutinized (Peng et al. 2011). We evaluated these 404	  

methods under a wide range of population structure scenarios undergoing either a hard or a soft 405	  

selective sweep. Furthermore, we investigated how the power and false discovery rate of the 406	  

methods are influenced by the allele frequency of the selected variant at the time of sampling.  407	  

We mainly focus on a local selective sweep scenario where the sweeping allele is 408	  

beneficial in one deme and neutral in all the others; a selection scenario that has been frequently 409	  

used in studies of human populations (Fournier-Level et al. 2011) but which has not yet been 410	  

studied extensively. Previous analyses on subdivided populations have examined the case of 411	  

global sweeps (Barton 2000; Bierne 2010; Santiago & Caballero 2005) or sweeps where a new 412	  

variant is beneficial in one part of the species range but detrimental elsewhere (Bierne 2010; Le 413	  

Corre & Kremer 2003). Here, we investigate in detail the scenario of an allele that is neutral in 414	  

most of the range but beneficial in one population. A feature of this latter scenario that is shared 415	  

with models of global sweeps is that migration will ultimately lead to the fixation of the 416	  

beneficial allele in all populations (Fig. 1b).  417	  
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In general, our results suggest that five (iHS, nSL, xp-EHH, XPCLR, hapFLK) out of the 418	  

seven methods we evaluated are able to identify genomic regions undergoing a selective sweep in 419	  

one or more of the scenarios we considered. The main difference between this group and the 420	  

other two methods (EHHST and XP-EHHST) is the nature of the information they use to 421	  

calculate the test statistic. The first group of five methods uses population level information 422	  

(either haplotype frequencies or allele frequencies) while the two other methods are based on 423	  

mean and standard deviation of homozygosity across all individuals in the sample (as opposed to 424	  

homozygosity of a region with respect to all chromosomes in the sample – see Material and 425	  

Methods and SI). This could explain their poor performance. More precisely, when there is no 426	  

migration among populations, as in the scenarios considered by Zhong et al. (2010), the 427	  

homozygosity is high for all individuals in the sample from the selected population and, 428	  

therefore, its standard deviation is small, which increases the power of the test (Zhong et al. 429	  

2010). However, in our scenarios migration is present and, therefore, there is a mixture of 430	  

individuals with very low and very high homozygosity in the selected population, and thus the 431	  

standard deviation of homozygosity is extremely large, decreasing the power of the test. A second 432	  

general result of our local selective sweep study is that XPCLR (Chen et al. 2010) has the best 433	  

overall performance under the range of scenarios considered in this study. However, it is 434	  

surpassed by iHS (Voight et al. 2006) and nSL (Ferrer-Admetlla et al. 2014), when the frequency 435	  

of the selected variant is low (i.e. for starting selective sweeps ≥0.1 and ≤0.3). XP-EHH performs 436	  

well for a narrow range of high allele frequencies of the selected variant, as previously shown by 437	  

Sabeti et al. (2007).  438	  

In the case of the more complex scenario of a hard selective sweep in heterogeneous 439	  

environments, only two methods, hapFLK and XPCLR, were relatively efficient at detecting 440	  
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sweeps but their power was still limited to some particular conditions. hapFLK had high power 441	  

but also a high FDR. XPCLR, on the other hand, could detect a sweep only if the reference 442	  

population was located near the boundary between the two habitats. Overall, these results suggest 443	  

that the applicability of these selection detection methods to study genetic clines and secondary 444	  

contact zones is limited. Nevertheless, by combining them it may be possible to identify the 445	  

genomic region driving the genetic cline and also the geographic region where the transition 446	  

between the two selective regimes occurs.  447	  

There is a paucity of simulation studies comparing the performance of methods aimed at 448	  

identifying selective sweeps. However, evaluations of individual methods are presented in the 449	  

publications that introduce them for the first time. Voight et al. (2006) indicate that iHS performs 450	  

best for intermediate to high allele frequencies while our results show a different pattern with best 451	  

performance at low frequencies (>0.1 and <0.3). We explain this difference by the homogenizing 452	  

effect of migration in the subdivided population structures that we investigated. In the case of a 453	  

local sweep where a variant is favoured in one deme and neutral elsewhere, the selected 454	  

population is swamped by haplotypes carrying the counter selected variant. Therefore, the 455	  

strength of the genetic signal used by iHS decreases. A similar pattern is observed for nSL, 456	  

another single-population method. The effect of migration on power is also pronounced for the 457	  

two-population methods (XP-EHH and XPCLR), (c.f. Fig. 1). As time goes by, and when 458	  

migration is low, the allele frequency of the selected variant (and linked SNPs) increases very 459	  

rapidly in the selected population but very slowly in the neighboring populations (Fig. 1a), so 460	  

power to detect the sweep is high. However, higher migration rates lead to a simultaneous and 461	  

rapid increase of the selected variant and linked SNPs also in neighboring populations, which 462	  

reduces the differentiation and the power to detect selection (Fig. 1b). A similar effect is observed 463	  
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when the selection coefficient is low (0.01), in which case the power decreases dramatically to 464	  

less than 45%.  465	  

Fariello et al. (2013) compare hapFLK with several other methods (Fst, FLK, hapFST and 466	  

xp-EHH) and show that it performs better than all of them. However, they consider a scenario 467	  

where there is a single episode of migration throughout the evolutionary history of the 468	  

population, a scenario applicable to a limited number of species. On the other hand, our analysis 469	  

assumes continuous migration, a scenario that should be applicable to a wide range of species. In 470	  

this situation, hapFLK performs well for hard sweeps both in hierarchical and even under simpler 471	  

population structures (e.g. island model; Fig. S12). However, this is not the case for the soft 472	  

sweep scenarios. Nevertheless, a great advantage of hapFLK over the other methods is that it is 473	  

applicable to scenarios with arbitrary number of subpopulations, which makes results 474	  

independent of the choice of populations included in the analysis. Additionally, hapFLK (and 475	  

nSL) does not require estimates of recombination rates, and therefore it is applicable to non-476	  

model species. 477	  

Our simulations study also systematically investigates whether or not signals produced by 478	  

soft selective sweeps from standing variation can be detected. Unsurprisingly, all methods are 479	  

less efficient under soft sweep than under hard sweep scenarios because multiple haplotypes 480	  

containing the selected variant segregate in the population. More specifically in the island or 481	  

stepping stone models, iHS has very limited power. On the other hand, xp-EHH has high power 482	  

only for a very small range of high allele frequencies. Interestingly, the initial frequency of the 483	  

selected variant before the onset of selection has a negligible effect on the performance of iHS 484	  

and xp-EHH. XPCLR also has high power to detect soft sweeps under simple population 485	  

structure scenarios, particularly for small and moderate IAF. However, none of the methods 486	  
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performed satisfactorily under the hierarchical population structure with migration, not even 487	  

hapFLK that was specifically designed for such scenario. Note, however, the performance of 488	  

XPCLR and hapFLK is greatly increased under the hierarchical scenario in the absence of 489	  

migration. Thus, XPCLR and hapFLK are the most promising methods for detecting soft sweeps 490	  

under complex population structures where migration is absent or very low.  491	  

As we have shown, no single method is able to detect both starting and nearly completed 492	  

selective sweeps. Combining several methods (e.g. XPCLR or hapFLK with iHS or nSL) can 493	  

greatly increase power to detect a wide range of selection signatures. A first step in this direction 494	  

is presented by Grossman et al. (2010) who propose the Composite of Multiple Signals method 495	  

which combines five different approaches (Fst, xp-EHH, iHS, ΔiHH (measures the absolute 496	  

integrated Haplotype Homozygosity) and ΔDAF (accounts for derived alleles at high frequency).  497	  

Although our study suggests that some of these methods are potentially useful to identify 498	  

selected regions, it is important to keep in mind that the statistical properties of the test statistics 499	  

they use are unknown and, therefore, assessing significance is based on ad-hoc methods that lack 500	  

statistical rigour. The only exceptions are EHHST and xp-EHHST, which were shown to be 501	  

asymptotically normal (Zhong et al. 2010). However, our study suggests that these two methods 502	  

are not able to detect selective sweeps under most realistic scenarios. In all other cases, there are 503	  

two alternative approaches (see Material and Methods). One is based on the empirical distribution 504	  

of the test statistic, which includes both selected and neutral sites and, therefore, is likely to lead 505	  

to high false positive rates. The second approach is based on a simulated distribution and would 506	  

be preferable in principle. However, it requires very good knowledge about the demographic 507	  

history of the population under study. Unfortunately, this is almost never the case even for model 508	  

species. Nevertheless, it is important to note that despite their important differences, our study 509	  
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suggests that both methods lead to comparable results (compare Figs. 1-3, 5 and Figs. S13-S23) 510	  

giving some support for the use of the empirical distribution approach.  511	  

Our study represents a substantial evaluation of recent genome scan methods to detect 512	  

selective sweeps, and therefore it should be of broad interest. We note, however, that with the 513	  

only exception of XPCLR, all these methods are applicable only to model species because they 514	  

require phased data and information on the ancestral/derived status at each segregating site. 515	  

However, continued developments in sequencing technology are broadening the range of species 516	  

that could be studied using these methods. Our systematic comparison of genome-scan methods 517	  

clarifies the conditions under which they should be applied and will help users to choose the most 518	  

adequate approach for their study. 519	  
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Figure Legends 658	  
 659	  
Figure 1: Results for the island model: a) trace of the allele frequency of the selected variant in 660	  
the selected population, Y, and in a neutral population, Z with migration rate 0.01 per generation; 661	  
b) likewise with m = 0.05 (the blue/green line represent the mean allele frequency over 1000 662	  
simulations and vertical lines represent the standard deviation); c-d) power for each method for 663	  
the hard sweep under the island model: c) iHS; d) nSL; e) EHHST; f) xp-EHH; g) XP-EHHST; h) 664	  
XPCLR. The scenario considers four demes with 2,500 individuals each, 101 loci and 665	  
0.00375cM/kb recombination rate, varying the migration rate and selection coefficient (see 666	  
legend).  667	  
	  668	  
Figure 2: Effect of distance from selected population on XPCLR:. a) Graphical description of the 669	  
stepping Stone Model with 7 populations with 2500 individuals each, 101 loci, selection 670	  
coefficient 0.1 (2Nes =500), migration rate 0.01 and recombination rate 0.00375cM/kb. Selection 671	  
is present in population Y; b) trace of the allele frequency of the selected locus for all pairs of 672	  
populations except from the boundary ones. The lines represent the mean allele frequency over 673	  
the 1000 simulations and the vertical lines the standard deviation; c) power of XPCLR for the 674	  
case of the hard sweep for the different pairs of populations.  675	  
 676	  
Figure 3: Results for the hierarchical island model and hard sweep scenario: a) graphical 677	  
representation of the population structure of the hierarchical model. Selection is present in only 678	  
one of the demes (Y); b) Power for iHS (black), nSL (blue), hapFLK (grey), xp-EHH (red) and 679	  
XPCLR (purple). Each of the four demes has 2500 individuals. We used 101 loci, migration rate 680	  
between populations within continents 0.02 and between continent 0.01, selection coefficient 0.1 681	  
(2Nes =500) and 0.00375cM/kb as recombination rate. In the case of xp-EHH and XPCLR, the 682	  
comparison of demes in the same (Y-X) and different (Y-Z) continents is also shown.  683	  
 684	  
Figure 4: Results of simulations of the stepping stone scenario with 52 populations. We 685	  
simulated 101 loci with a recombination rate of 0.00375cM/kb. Each population had 500 686	  
individuals, the migration rate was 0.05 and the selection coefficient was 0.05 (2Nes=50). Allele 687	  
1 is favoured in populations 1-25 (habitat 1) and allele 0 is favoured in populations 26-50 (habitat 688	  
2). a) Power of XPCLR for analyses with  population 1 as the objective population and each one 689	  
of the other populations as the reference after 40,000 generations since the appearance of the 690	  
mutation; b) frequency of the selected allele (at locus 50) across all populations at different times 691	  
since its appearance in population 1 (number of generations indicated in the legend); c) pairwise 692	  
Fst between population 1 and all the others for the selected locus (50);  d) pairwise Fst between 693	  
population 1 and all the others for the neutral locus (80). 694	  
 695	  
Figure 5: Power of each method for the case of a soft sweep under the island model. a) iHS, b) 696	  
nSL c) xp-EHH, and d) XPCLR. Results presented for different initial allele frequencies of the 697	  
selected variant: 0.02 (black), 0.1 (grey), 0.2 (red), 0.4 (blue). Four demes with 2500 individuals 698	  
each, 101 loci, migration rate 0.01, selection coefficient 0.05 (2Nes=250) and 0.00375cM/kb as 699	  
recombination rate. Selection is acting only in one deme (Y). 700	  
 701	  
 702	  
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Table 1:  Parameters that were used in the simulations with simuPOP for the hard and the soft 703	  
sweep. m1 is the migration rate of populations within the same group in the hierarchical model 704	  
and m2 the migration rate of populations between different groups. 705	  
 706	  

 707	  
 708	  

  709	  

    710	  

 711	  

 712	  

 713	  

 714	  

 715	  

 716	  

 Population 
Structure 

Migration 
rate (m) 

Selective 
coefficient (s) 

Mutation 
rate 

Recombination 
rate (r) 

Hard Sweep 

Island Model 
Stepping Stone Model 
 

0.008 
0.01 
0.05 

0.1 (2Nes=500) 

 
10-8 
 
 

0.00375cM/kb 
 

0.008 0.08 (2Nes=400) 
0.01 (2Nes=50) 

Hierarchical Model m1=0.02 
m2=0.01 0.1 (2Nes=500) 

Soft Sweep 

Island Model 
Stepping Stone Model 
 

 
0.01 

 
0.05 (2Nes=250) 
 

Hierarchical Model 

m1=0.02 
m2=0.01 
 

0.05 (2Nes=250) 

m=0 0.05 (2Nes=250) 


