29 research outputs found

    A shoot Fe signaling pathway requiring the OPT3 transporter controls GSNO reductase and ethylene in arabidopsis thaliana roots

    Get PDF
    Ethylene, nitric oxide (NO) and glutathione (GSH) increase in Fe-deficient roots of Strategy I species where they participate in the up-regulation of Fe acquisition genes. However, S-nitrosoglutathione (GSNO), derived from NO and GSH, decreases in Fe-deficient roots. GSNO content is regulated by the GSNO-degrading enzyme S-nitrosoglutathione reductase (GSNOR). On the other hand, there are several results showing that the regulation of Fe acquisition genes does not solely depend on hormones and signaling molecules (such as ethylene or NO), which would act as activators, but also on the internal Fe content of plants, which would act as a repressor. Moreover, different results suggest that total Fe in roots is not the repressor of Fe acquisition genes, but rather the repressor is a Fe signal that moves from shoots to roots through the phloem [hereafter named LOng Distance Iron Signal (LODIS)]. To look further in the possible interactions between LODIS, ethylene and GSNOR, we compared Arabidopsis WT Columbia and LODIS-deficient mutant opt3-2 plants subjected to different Fe treatments that alter LODIS content. The opt3-2 mutant is impaired in the loading of shoot Fe into the phloem and presents constitutive expression of Fe acquisition genes. In roots of both Columbia and opt3-2 plants we determined 1-aminocyclopropane1-carboxylic acid (ACC, ethylene precursor), expression of ethylene synthesis and signaling genes, and GSNOR expression and activity. The results obtained showed that both 'ethylene' (ACC and the expression of ethylene synthesis and signaling genes) and 'GSNOR' (expression and activity) increased in Fe-deficient WT Columbia roots. Additionally, Fe-sufficient opt3-2 roots had higher 'ethylene' and 'GSNOR' than Fe-sufficient WT Columbia roots. The increase of both 'ethylene' and 'GSNOR' was not related to the total root Fe content but to the absence of a Fe shoot signal (LODIS), and was associated with the up-regulation of Fe acquisition genes. The possible relationship between GSNOR(GSNO) and ethylene is discussed

    Virtualización del Título Propio en Olivicultura y Elaiotecnia. Elaboración de Materiales

    Get PDF
    Es conocido que España es primer país productor de aceite de oliva del mundo, con un 40 % de la producción mundial y el 50 % de la producción de la Unión Europea, siendo la provincia de Jaén, con el 38,4 % de la producción española, la mayor zona productora del mundo en aceite de oliva. Sin embargo, se trata de un sector en el que la escasa profesionalización es, tal vez, su mayor debilidad.La Universidad de Jaén, consciente del importante papel que ha de jugar como Institución dinamizadora del desarrollo de su entorno, en el que el sector del olivar y del aceite de oliva tiene una enorme importancia, considera que es urgente formar titulados universitarios de grado superior que posean conocimientos integrales y solventes en olivicultura y elaiotecnia de modo que incorporados a las empresas del sector del olivar y el aceite de oliva o creando las suyas propias, lo modernicen y desarrollen, contribuyendo a dotarlo de cultura empresarial y al desarrollo socioeconómico y, por ende, al bienestar de los ciudadanos de la provincia

    Nitric oxide is associated with tolerance to bicarbonate-induced chlorosis in micropropagated Prunus explants.

    No full text
    Iron (Fe) chlorosis is a common nutritional deficiency in fruit trees grown in calcareous soils. Grafting on tolerant rootstocks is the most efficient practice to cope with it. In the present work, three Prunus hybrid genotypes, commonly used as peach rootstocks, and one peach cultivar were cultivated with bicarbonate in the growth medium. Parameters describing oxidative stress and the metabolism of reactive nitrogen species were studied. Lower contents of nitric oxide and a decreased nitrosoglutathione reductase activity were found in the most sensitive genotypes, characterized by higher oxidative stress and reduced antioxidant defense. In the peach cultivar, which behaved as a tolerant genotype, a specifically nitrated polypeptide was found

    Nitric oxide (NO) and salicylic acid (SA): A framework for their relationship in plant development under abiotic stress

    No full text
    The free radical nitric oxide (NO) and the phenolic phytohormone salicylic acid (SA) are signal molecules which exert key functions at biochemical and physiological levels. Abiotic stresses, especially in early plant development, impose the biggest threats to agricultural systems and crop yield. These stresses impair plant growth and subsequently cause a reduction in root development, affecting nutrient uptake and crop productivity. The molecules NO and SA have been identified as robust tools for efficiently mitigating the negative effects of abiotic stress in plants. SA is engaged in an array of tasks under adverse environmental situations. The function of NO depends on its cellular concentration; at a low level, it acts as a signal molecule, while at a high level, it triggers nitro-oxidative stress. The crosstalk between NO and SA involving different signalling molecules and regulatory factors modulate plant function during stressful situations. Crosstalk between these two signalling molecules induces plant tolerance to abiotic stress and needs further investigation. This review aims to highlight signalling aspects of NO and SA in higher plants and critically discusses the roles of these two molecules in alleviating abiotic stress.The authors thank the Director MNNIT Allahabad for facilitating necessary resources for accomplishment of this work

    A shoot fe signaling pathway requiring the opt3 transporter controls gsno reductase and ethylene in arabidopsis thaliana roots

    No full text
    Ethylene, nitric oxide (NO) and glutathione (GSH) increase in Fe-deficient roots of Strategy I species where they participate in the up-regulation of Fe acquisition genes. However, S-nitrosoglutathione (GSNO), derived from NO and GSH, decreases in Fe-deficient roots. GSNO content is regulated by the GSNO-degrading enzyme S-nitrosoglutathione reductase (GSNOR). On the other hand, there are several results showing that the regulation of Fe acquisition genes does not solely depend on hormones and signaling molecules (such as ethylene or NO), which would act as activators, but also on the internal Fe content of plants, which would act as a repressor. Moreover, different results suggest that total Fe in roots is not the repressor of Fe acquisition genes, but rather the repressor is a Fe signal that moves from shoots to roots through the phloem [hereafter named LOng Distance Iron Signal (LODIS)]. To look further in the possible interactions between LODIS, ethylene and GSNOR, we compared Arabidopsis WT Columbia and LODIS-deficient mutant opt3-2 plants subjected to different Fe treatments that alter LODIS content. The opt3-2 mutant is impaired in the loading of shoot Fe into the phloem and presents constitutive expression of Fe acquisition genes. In roots of both Columbia and opt3-2 plants we determined 1-aminocyclopropane-1-carboxylic acid (ACC, ethylene precursor), expression of ethylene synthesis and signaling genes, and GSNOR expression and activity. The results obtained showed that both ‘ethylene’ (ACC and the expression of ethylene synthesis and signaling genes) and ‘GSNOR’ (expression and activity) increased in Fe-deficient WT Columbia roots. Additionally, Fe-sufficient opt3-2 roots had higher ‘ethylene’ and ‘GSNOR’ than Fe-sufficient WT Columbia roots. The increase of both ‘ethylene’ and ‘GSNOR’ was not related to the total root Fe content but to the absence of a Fe shoot signal (LODIS), and was associated with the up-regulation of Fe acquisition genes. The possible relationship between GSNOR(GSNO) and ethylene is discussed.This work was supported by the European Regional Development Fund from the European Union, the ‘Ministerio de Economía y Competitividad’ (Projects AGL2013-40822-R and AGL2015-65104-P) and the Junta de Andalucía (Research Groups AGR115, BIO159, and BIO192).Peer Reviewe

    A shoot Fe signaling pathway requiring the OPT3 transporter controls GSNO reductase and ethylene in arabidopsis thaliana roots

    No full text
    Ethylene, nitric oxide (NO) and glutathione (GSH) increase in Fe-deficient roots of Strategy I species where they participate in the up-regulation of Fe acquisition genes. However, S-nitrosoglutathione (GSNO), derived from NO and GSH, decreases in Fe-deficient roots. GSNO content is regulated by the GSNO-degrading enzyme S-nitrosoglutathione reductase (GSNOR). On the other hand, there are several results showing that the regulation of Fe acquisition genes does not solely depend on hormones and signaling molecules (such as ethylene or NO), which would act as activators, but also on the internal Fe content of plants, which would act as a repressor. Moreover, different results suggest that total Fe in roots is not the repressor of Fe acquisition genes, but rather the repressor is a Fe signal that moves from shoots to roots through the phloem [hereafter named LOng Distance Iron Signal (LODIS)]. To look further in the possible interactions between LODIS, ethylene and GSNOR, we compared Arabidopsis WT Columbia and LODIS-deficient mutant opt3-2 plants subjected to different Fe treatments that alter LODIS content. The opt3-2 mutant is impaired in the loading of shoot Fe into the phloem and presents constitutive expression of Fe acquisition genes. In roots of both Columbia and opt3-2 plants we determined 1-aminocyclopropane1-carboxylic acid (ACC, ethylene precursor), expression of ethylene synthesis and signaling genes, and GSNOR expression and activity. The results obtained showed that both 'ethylene' (ACC and the expression of ethylene synthesis and signaling genes) and 'GSNOR' (expression and activity) increased in Fe-deficient WT Columbia roots. Additionally, Fe-sufficient opt3-2 roots had higher 'ethylene' and 'GSNOR' than Fe-sufficient WT Columbia roots. The increase of both 'ethylene' and 'GSNOR' was not related to the total root Fe content but to the absence of a Fe shoot signal (LODIS), and was associated with the up-regulation of Fe acquisition genes. The possible relationship between GSNOR(GSNO) and ethylene is discussed
    corecore