19 research outputs found

    Optical properties of low background PEN structural components for the LEGEND-200 experiment

    Full text link
    Polyethylene Naphthalate (PEN) plastic scintillator has been identified as potential self-vetoing structural material in low-background physics experiments. Scintillating components have been produced radio-pure from PEN using injection compression molding technology. These low-background PEN components will be used as active holders to mount the Germanium detectors in the \legend-200200 neutrinoless double beta decay experiment. In this paper we present the measurement of the optical properties of these PEN components. Thus, the emission spectrum, time constant, attenuation and bulk absorption length as well as light output and light yield are reported. In addition, the surface of these PEN components has been characterized and an estimation of the surface roughness is presented. Moreover, the light output of the final \legend-200200 detector holders has been measured and is reported. These measurements were used to estimate the self-vetoing efficiency of these holders

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    Quantifying Oxygen in Tungsten by Ion Beam Analysis

    No full text

    Material erosion, deposition and material transport in the stellarator W7-X

    No full text
    Material erosion, deposition and material transport in the stellaratorW7-XM. Mayera,*, M. Baldena, S. Brezinsekb, V.V. Burwitza,c, C.P. Dhardd, R. Guimarãese, M. Guitart Corominasa, P. Hireta, D. Naujoksd, R. Neua,c, J.H. Schmidt-Denckera, T.S. Silvae, and W7-X TeamaMax-Planck-Institut für Plasmaphysik, Garching, GermanybForschungszentrum Jülich GmbH, Jülich, GermanycTechnische Universität München, München,GermanydMax-Planck-Institut für Plasmaphysik, Greifswald, GermanyeUniversity of São Paulo, São Paulo, BrazilNet erosion, deposition and material transport in the stellarator W7-X were investigated on the Test Divertor Unit (TDU) using special carbon marker coatings and on the vessel walls by analysis of W-coated and regular wall elements duringthe operational phases OP1.2a in the year 2017 and OP1.2b in 2018. While OP1.2a was characterised by high concentrations of oxygen and carbon impuritiesin the plasmas, OP1.2b had much smaller impurity concentrations due to regular boronizations and showed considerably better plasma performances with higher plasma densities. First exposures of tungsten marker coatings in the TDU and at the inner heat shield were performed in OP1.2b. The samples were analysed by quantitative ion beam analysis methods, scanning electron microscopy, and laser-induced breakdown spectroscopy (LIBS).Very high net erosion of carbon was observed at the strike line of all 10 TDUs in both campaignsand is attributed to sputtering and chemical erosion by C and O impurities in OP1.2a[1], while the erosion was probably dominated by impact of H ions in OP1.2b. Re-deposition of carbon in remote areas of the TDU was small.Thicker re-deposited carbon layers with thicknesses of a few microns were observed at the divertor baffles,anoticeable deposition of boron on the TDU was observed after OP1.2b. The inner wall showed no erosion but net deposition of about 100 nm thick boron/carbon layersdue to the boronizations, the outer vessel wall showed a complicated pattern of small erosion areas and thin deposits. Stripes of boron/carbon layers were observed behind the gaps of inner wall protection tiles.The global carbon balance is currently unclear. However, carbon eroded from the TDU was not redeposited in the divertor region but was transported out of the divertor area. Some carbon was redeposited at the divertor baffles but was also pumped out as CO, CO2, or CH4. This is a profound difference to divertors in tokamaks, where eroded material is typically redeposited in remote divertor areas or in the inner divertor. A first assessment of tungsten as plasma-facing material in W7-X is provided.[1] M. Mayer et al., PFMC 2019, Phys. Scr., in press*Corresponding author:tel.: +49 89 3299 1639, e-mail: [email protected]
    corecore