61 research outputs found

    A Note on Classical Solution of Chaplygin-gas as D-brane

    Get PDF
    The classical solution of bosonic d-brane in (d+1,1) space-time is studied. We work with light-cone gauge and reduce the problem into Chaplygin gas problem. The static equation is equivalent to vanishing of extrinsic mean curvature, which is similar to Einstein equation in vacuum. We show that the d-brane problem in this gauge is closely related to Plateau problem, and we give some non-trivial solutions from minimal surfaces. The solutions of d-1,d,d+1 spatial dimensions are obtained from d-dimensional minimal surfaces as solutions of Plateau problem. In addition we discuss on the relation to Hamiltonian-BRST formalism for d-branes.Comment: 20 pages,No figures, Latex, Address change

    Interplay among critical temperature, hole content, and pressure in the cuprate superconductors

    Full text link
    Within a BCS-type mean-field approach to the extended Hubbard model, a nontrivial dependence of T_c on the hole content per unit CuO_2 is recovered, in good agreement with the celebrated non-monotonic universal behaviour at normal pressure. Evaluation of T_c at higher pressures is then made possible by the introduction of an explicit dependence of the tight-binding band and of the carrier concentration on pressure P. Comparison with the known experimental data for underdoped Bi2212 allows to single out an `intrinsic' contribution to d T_c / d P from that due to the carrier concentration, and provides a remarkable estimate of the dependence of the inter-site coupling strength on the lattice scale.Comment: REVTeX 8 pages, including 5 embedded PostScript figures; other required macros included; to be published in Phys. Rev. B (vol. 54

    Surgical management of giant pituitary neuroendocrine tumors: Meta-analysis and consensus statement on behalf of the EANS skull base section.

    Get PDF
    The optimal surgical treatment for giant pituitary neuroendocrine tumors(GPitNETs) is debated. The aim of this paper is to optimize the surgical management of these patients and to provide a consensus statement on behalf of the EANS Skull Base Section. We constituted a task force belonging to the EANS skull base committee to define some principles for the management of GPitNETs. A systematic review was performed according to PRISMA guidelines to perform a meta-analysis on surgical series of GPitNETs. Weighted summary rates were obtained for the pooled extent of resection and according to the surgical technique. These data were discussed to obtain recommendations after evaluation of the selected articles and discussion among the experts. 20articles were included in our meta-analysis, for a total of 1263 patients. The endoscopic endonasal technique was used in 40.3% of cases, the microscopic endonasal approach in 34% of cases, transcranial approaches in 18.7% and combined approaches in 7% of cases. No difference in terms of gross total resection (GTR) rate was observed among the different techniques. Pooled GTR rate was 36.6%, while a near total resection (NTR) was possible in 45.2% of cases. Cavernous sinus invasion was associated with a lower GTR rate (OR: 0.061). After surgery, 35% of patients had endocrinological improvement and 75.6% had visual improvement. Recurrent tumors were reported in 10% of cases. After formal discussion in the working group, we recommend the treatment of G-PitNETs tumors with a more complex and multilobular structure in tertiary care centers. The endoscopic endonasal approach is the first option of treatment and extended approaches should be planned according to extension, morphology and consistency of the lesion. Transcranial approaches play a role in selected cases, with a multicompartmental morphology, subarachnoid invasion and extension lateral to the internal carotid artery and in the management of residual tumor apoplexy

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time, and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space. While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes, vast areas of the tropics remain understudied. In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity, but it remains among the least known forests in America and is often underrepresented in biodiversity databases. To worsen this situation, human-induced modifications may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge, it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    A Comparison of Background Subtraction Techniques Under Sudden Illumination Changes for Video Surveillance

    Get PDF
    M.Eng. (Electrical and Electronic Engineering)Abstract: Please refer to full text to view abstrac

    Oxygen-conserving reflexes of the brain : the current molecular knowledge

    No full text
    The trigemino-cardiac reflex (TCR) may be classified as a sub-phenomenon in the group of the so-called 'oxygen-conserving reflexes'. Within seconds after the initiation of such a reflex, there is neither a powerful and differentiated activation of the sympathetic system with subsequent elevation in regional cerebral blood flow (CBF) with no changes in the cerebral metabolic rate of oxygen (CMRO(2)) or in the cerebral metabolic rate of glucose (CMRglc). Such an increase in regional CBF without a change of CMRO(2) or CMRglc provides the brain with oxygen rapidly and efficiently and gives substantial evidence that the TCR is an oxygen-conserving reflex. This system, which mediates reflex protection projects via currently undefined pathways from the rostral ventrolateral medulla oblongata to the upper brainstem and/or thalamus which finally engage a small population of neurons in the cortex. This cortical centre appears to be dedicated to reflexively transduce a neuronal signal into cerebral vasodilatation and synchronization of electrocortical activity. Sympathetic excitation is mediated by cortical-spinal projection to spinal pre-ganglionic sympathetic neurons whereas bradycardia is mediated via projections to cardiovagal motor medullary neurons. The integrated reflex response serves to redistribute blood from viscera to brain in response to a challenge to cerebral metabolism, but seems also to initiate a preconditioning mechanism. Better and more detailed knowledge of the cascades, transmitters and molecules engaged in such endogenous (neuro) protection may provide new insights into novel therapeutic options for a range of disorders characterized by neuronal death and into cortical organization of the brain

    Multivariate estimation of factor structures of complex traits using SNP-based genomic relationships

    No full text
    Background: Heritability and genetic correlation can be estimated from genome-wide single-nucleotide polymorphism (SNP) data using various methods. We recently developed multivariate genomic-relatedness-based restricted maximum likelihood (MGREML) for statistically and computationally efficient estimation of SNP-based heritability (hSNP2) and genetic correlation (ρG) across many traits in large datasets. Here, we extend MGREML by allowing it to fit and perform tests on user-specified factor models, while preserving the low computational complexity. Results: Using simulations, we show that MGREML yields consistent estimates and valid inferences for such factor models at low computational cost (e.g., for data on 50 traits and 20,000 individuals, a saturated model involving 50 hSNP2’s, 1225 ρG’s, and 50 fixed effects is estimated and compared to a restricted model in less than one hour on a single notebook with two 2.7 GHz cores and 16 GB of RAM). Using repeated measures of height and body mass index from the US Health and Retirement Study, we illustrate the ability of MGREML to estimate a factor model and test whether it fits the data better than a nested model. The MGREML tool, the simulation code, and an extensive tutorial are freely available at https://github.com/devlaming/mgreml/. Conclusion: MGREML can now be used to estimate multivariate factor structures and perform inferences on such factor models at low computational cost. This new feature enables simple structural equation modeling using MGREML, allowing researchers to specify, estimate, and compare genetic factor models of their choosing using SNP data

    Review of 2D/3D reconstruction using statistical shape and intensity models and X-ray image synthesis: towards a unified framework

    No full text
    Patient-specific three-dimensional (3D) bone models are useful for a number of clinical applications such as surgery planning, postoperative evaluation as well as implant and prosthesis design. Two--dimensional--to--three--dimensional (2D/3D) reconstruction, also known as model-to-modality or atlas--based 2D/3D registration, provides a means of obtaining a 3D model of a patient's bone(s) from their 2D radiographs, when 3D imaging modalities are not available. The preferred approach to estimating both shape and density information (that would be present in a patient's CT data) for 2D/3D reconstruction makes use of digitally reconstructed radiographs and deformable models in an iterative, non-rigid, intensity-based approach. Based on a large number of state-of-the-art 2D/3D bone reconstruction methods, a unified mathematical formulation of the problem is proposed in a common conceptual framework, using unambiguous terminology. In addition, shortcomings, recent adaptations and persisting challenges are discussed along with insights for future research
    • 

    corecore