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Chapter 1

Introduction and Problem

Statement

1.1 Background

The field of computer vision is the study of techniques to extract meaningful information

from digital images and videos repeatably, efficiently and accurately. It includes methods

to acquire, process, analyze and understand images [1]. The primary goal of computer

vision is to develop a system that can describe the world that is seen in one or more

images and to reconstruct its properties [2].

There are a number of fields of study in computer vision as is shown in Figure 1.1.

One of these is object detection. Its main aim is the detection and identification of

salient information or objects from an image or video sequence. Object detection has

a wide variety of applications including intelligent visual surveillance, intelligent visual

observation of animals and insects, optical motion capture, human-machine interaction,

content-based video coding automated systems and manufacturing processes [3].

Background subtraction techniques are a popular form of object detection in computer

vision systems for video sequences and have become a fundamental component for many

of its applications. They are useful because one can identify object regions within clut-

tered and undefined scenes. The goal is to classify the background in a scene so that only

foreground objects remain for further analysis; tracking a herd of animals in an outdoor

environment is an example of this [4]. This is achieved by subtracting a background im-

age from an observed image. However, when simple background subtraction techniques

are implemented in scenes with dynamic backgrounds or fluctuating lighting conditions,

problems begin to arise [5]. As an example, scenes that contain swaying leaves or moving

1
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Figure 1.1: An illustration of the relationship between images, geometry and pho-
tometry [2].

clouds cast shadows and can easily be misinterpreted as additional objects. In order to

obtain an accurate background model it has to be updated regularly in order to adapt

to the temporal changes.

A number of background modeling challenges exist including noisy input, camera jitter,

automatic camera adjustments, bootstrapping, camouflage, foreground aperture, moved

background objects, inserted background objects, dynamic backgrounds, beginning mov-

ing objects, sleeping foreground objects, shadows and illumination changes [3].
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1.2 Problem statement

Numerous background modeling techniques have been proposed to address gradual il-

lumination changes in a scene. Some of the state-of-the-art methods include Gaussian

Mixture Models (GMM), Codebooks, Eigenbackgrounds, Shading Models (SM), Statisti-

cal Circular Shift Moments (SCSM), and Local Binary Patterns (LBP) [6, 7, 8, 9, 10, 11].

However sudden illumination changes, such as light sources being turned on and off or

curtains being opened or closed, are still a very challenging problem and an active area of

research. In recent years a number of new segmentation techniques have been proposed

with the potential to be robust to sudden illumination changes and small background

dynamics at the cost of being computationally expensive. It is now necessary to compare

the performance and characterize the capabilities of this new set of proposed techniques.

1.3 Purpose of the study

This dissertation aims to measure and compare a number of candidate solutions for back-

ground modeling under sudden illumination changes. Once identified and implemented

a comparison and analysis of their characteristics will be discussed. Furthermore, the

superior mechanisms of these solutions will then be incorporated into a new algorithm,

with the hopes of outperforming previously developed solutions.

1.4 Scope

For the scope of this dissertation, the algorithms that will be investigated will be con-

strained to video sequences of a stationary scene. A scene can be indoor or outdoor and

can contain moving vegetation or sudden illumination changes. No prior information

regarding the background will be available; an on-line adaptive background model will

be built and maintained.

1.5 Research methodology

We implement the Design Science Research Paradigm which provides a set of techniques

with which to analyse research in information systems. It involves the design of novel

or innovative solutions and the analysis of the use and/or performance of such solutions

to improve existing information systems [12].
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A literature review will first be completed to identify three techniques that have potential

to handle sudden illumination changes. These solutions will be implemented and then

tested using a publicly available dataset. These contain scenes under gradual and sudden

illumination changes as well as scenes with dynamic backgrounds like waving trees. The

best solution will be distinguished with regard to accuracy and computation time. Using

this solution as a basis, and incorporating useful modules from all three solutions, a new,

superior solution will be developed. Furthermore, this solution will be implemented on

a Graphics Processing Unit (GPU) for real-time application.

1.6 Dissertation overview

In summary, this dissertation will investigate background modeling techniques that have

potential to be robust against sudden and gradual illumination changes for a stationary

scene in Chapter 2. Furthermore, the most robust parts of these techniques will be

identified in Chapters 3 and 4, improved upon in Chapter 5, and implemented on a

GPU in order to achieve real-time processing speeds. Finally, some conclusions and

insights are discussed in Chapter 6.



Chapter 2

Literature Review

This chapter will provide an overview of the theory and concepts related to background

subtraction and illumination change. This dissertation will primarily focus on back-

ground modeling and maintenance techniques, the sub-categories of which will be ex-

plored in greater detail. Some sub-categories are not immediately relevant in terms of

their capacity to perform in real-time or handle sudden illumination changes (section

2.1.9.6 and beyond) and these have only been discussed very briefly.

2.1 Background subtraction concepts

2.1.1 Image

An image (as shown in Figure 2.1) is defined as a two-dimensional array that corresponds

to the grid of pixels that comprise a digital image. Each pixel has four normalized values

corresponding to the red channel, green channel, blue channel and pixel intensity.

P̄ (x, y) = 〈r(x, y), g(x, y), b(x, y), I(x, y)〉 (2.1)

where r(x, y), g(x, y), b(x, y) and I(x, y) are the red, green, blue and intensity values at

coordinates (x, y) and (x, y) ∈ Ω where Ω is the image domain.

I(x, y) is a gamma-corrected greyscale value that can be computed with the following

equation (Figure 2.2) [14]:

I(x, y) = 0.2126r(x, y) + 0.7152g(x, y) + 0.0722b(x, y) (2.2)

5
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Figure 2.1: Each pixel in an image has four values corresponding to the red, blue,
green and intensity channel [13].

Figure 2.2: The grayscale intensity value is calculated using a weighted sum of the
red, blue and green colour channels [15].

2.1.2 Video

A video (as shown in Figure 2.3) is defined as a temporally ordered sequence of images:

V̄ (x, y, t) = P̄t(x, y) = 〈rt(x, y), gt(x, y), bt(x, y), It(x, y)〉 (2.3)

where rt(x, y), gt(x, y), bt(x, y) and It(x, y) are the red, green, blue and intensity values

at coordinates (x, y) and time t.

2.1.3 Feature

A feature is a specific structure in an image and acts as a descriptor of image information.

There are typically five types of features which are commonly used: colour, edge, depth,

motion and texture [3] (Figure 2.4. Features are selected based on their relevance to the

computational task to be solved. As an example, colour features are very discriminatory

but have limitations when encountering shadow, camouflage and illumination changes

and are thus context-dependent. A set of multiple features is known as a feature vector

and all the possible features comprise the feature space:
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Figure 2.3: A video is a temporally ordered sequence of images [16].

Ē(x, y) = 〈e1(x, y), e2(x, y), ..., ei(x, y)〉 (2.4)

where Ē(x, y) is a feature vector that comprises i features where ∆ is the feature space:

Ē(x, y) ⊂ {e1(x, y), e2(x, y), ..., ei(x, y)} ∈ ∆ (2.5)

Figure 2.4: Example of corner features (shown in red) [17].

It is common to use a combination of features, such as a colour feature along with an

edge feature to be more robust to local illumination changes.

Features have different sizes depending on what scale they operate at such as a pixel,

block or cluster. The size of a feature influences it’s precision, tolerance to noise and
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size of image structure it can describe.

Furthermore, different strategies can be employed, such as a multi-level approach, in

order to achieve a desired property of a background model such as scale-invariance.

Figure 2.5 shows how a Difference-of-Gaussian (DOG) Approach can be implemented

to extract different scale levels as shown in Figure 2.6.

Figure 2.5: The DOG scale space technique [18].

Figure 2.6: Different levels of a DOG scale space with increasing sigma from left-to-
right and top-to-bottom [19].

Features, like ones that describe edges or colour, often only make use of low-order statis-

tics (constant or linear terms) [20]. The colour or greyscale histogram, local binary

pattern (LBP) and moments are examples of higher-order statistics that can be imple-

mented as features.

2.1.3.1 Greyscale histogram

A greyscale histogram is an array of size N which corresponds to the number of greyscale

intensity bins in a digital image. N is commonly 256 due to an 8-bit image representa-

tion. The histogram can be defined by the following discrete function:

h(rk) = nk (2.6)
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where rk is the kth grey level and nk is the number of pixels in the image having the

gray level rk. Figure 2.7 shows a typical histogram.

Figure 2.7: An illustrated greyscale histogram showing frequency (number of pixels)
versus intensity bin value (0-255) [21].

Similarly, colour histograms can be employed as colour features. The histogram is

ubiquitous in image processing and a very useful statistic in brightness and contrast

enhancement techniques as shown in Figure 2.8.

Figure 2.8: Image Enhancement using histogram equalization [21].
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2.1.3.2 Local binary pattern

The LBP is well-known as a texture descriptor and is defined as follows [11]:

LBPN,R(xc, yc) =
N−1∑

i=0

2is(gi − gc) (2.7)

s(x) =

{
1, x >= 0

0, x < 0

where gc is the grey value of the centre pixel (xc, yc) and N is the number of neighbours

to be compared. The neighbours are evenly distributed on a circle around the centre

pixel with radius R (Figure 2.9). If a neighbour value does not fall exactly on a pixel it

is estimated using bilinear interpolation.

Figure 2.9: An illustration of how an LBP computed for different numbers of neigh-
bours, N , and at different radii, R. N = 8 and R = 2 for the example on the left,
N = 12 and R = 3 for the middle example and N = 16 and R = 3 for the example on

the right [22].

The LBP is advantageous because it is tolerant of illumination changes. It employs the

difference of pixel intensities relative to one another instead of to an absolute value;

when the lighting changes in a scene this difference value is affected far less than if it

were an intensity value alone. An illustration of how the LBP is calculated is provided

in Figure 2.10.

Figure 2.10: An illustration of how the LBP is calculated [23].
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A variation on the classic LBP has been suggested by Zhou et al. [5] and is described

by Equation 2.8; the pattern is modified to include colour information.

SCBP2N,R(xc, yc) = LBPN,R(xc, yc) + 2N+1f(Rc, Gc|γ)+

2N+2f(Gc, Bc|γ) + 2N+3f(Bc, Rc|γ) (2.8)

f(a, b|γ) =

{
1, a > γb

0, otherwise
(2.9)

where Rc, Gc and Bc are the three colour channels of the centre pixel (xc, yc) and γ > 1

is a noise suppression factor.

Furthermore, to simplify computation, Zhou et al. modify the pattern so that it does

not compare the centre-pixel to its immediate neighbours, but rather that neighbours of

the centre-pixel (across from one another) are compared (Figure 2.11). Also, one of the

colour channels is excluded from the computation as the information present in these

channels is highly correlative.

SCBP2N,R(xc, yc) = CS LBP2N,R(xc, yc) + 2N+1f(Rc, Gc|γ) + 2N+2f(Gc, Bc|γ) (2.10)

where the CS-LBP is defined as:

CS LBP2N,R(xc, yc) =
N−1∑

i=0

2is(gi − gi+N ) (2.11)

Figure 2.11: An illustration of how the LBP and SC-LBP is calculated [5].
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2.1.3.3 Moments

A moment is a quantitative measure used to describe the shape of the distribution of a

set of points [24]. For a probability distribution such as pixel intensity values, the zeroth

moment corresponds to the total probability. The normalized first, second, third and

fourth moments correspond to the mean, variance, skewness and kurtosis (flatness) of

the probability distribution.

For a discrete two-dimensional probability distribution the kth moment is defined by

Equation 2.12.

1

mn

m∑

i=1

n∑

j=1

X(i, j)k (2.12)

Where X(i, j) is a sample of a probability distribution, X, at index (i, j).

2.1.4 Fuzzy logic

Critical situations at various stages of the background subtraction process give rise to

uncertainties and imprecision. To account for this a number of fuzzy1 methods have

been proposed at each of these steps. Those pertinent to background modeling include

fuzzy background modeling and fuzzy features. A background to fuzzy sets and logic

can be found in Zadeh [25].

Fuzzy background modeling encompasses the use of a fuzzy running average or Type-2

fuzzy Mixture-of-Gaussians to model the background [26, 27]. Various fuzzy features are

used to model the background such as the fuzzy correlogram or the fuzzy transformed

co-occurrence vector.

2.1.5 Background subtraction

Background subtraction is implemented in order to distinguish foreground pixels from

background pixels. It typically comprises four steps: Background initialization, back-

ground modeling, foreground detection and background maintenance. A flow chart

illustrating the background subtraction process is provided in Figure 2.12 [28].

1Fuzzy logic is a form of logic where variables have truth values that are not only true or false, but
can range between 0 and 1. It is well-suited to decision making based on approximate rather than exact
thresholds.
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Figure 2.12: The background subtraction process [3]. N is the number of frames used
for the background initialization, Bt and ft is the background model and foreground

mask at time t, respectively.

2.1.6 Foreground detection

Foreground detection involves the task of classifying a pixel as foreground or background.

This is achieved through per-pixel multiplication of the input image and a foreground

mask, ft(x, y). The result of this multiplication is known as a foreground image, Ft(x, y):

Ft(x, y) = It(x, y) ◦ ft(x, y) (2.13)

ft(x, y) ⊂
{

1, if foreground

0, if background

where (x, y) ∈ Ω at time t.

The foreground mask is usually determined using a difference frame, Dt(x, y), of the

current image, It(x, y) and the background model image, Bt(x, y) (Figure 2.13), which

is defined as [3]:

Dt(x, y) = d(It(x, y), Bt−1(x, y)) = |It(x, y)−Bt−1(x, y)| (2.14)

where {Dt(x, y), Bt(x, y)} ∈ Ω. d(a, b) need not necessarily be the absolute difference as

in Equation 2.14; in fact any distance measure can be used.

Once a background model is initialized a difference image is taken and each pixel is

classified as foreground or background depending on a threshold, T , as in Equation

2.15.

ft(x, y) ⊂
{

1, if Dt(x, y) > T

0, otherwise
(2.15)
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Figure 2.13: The frame-differencing process used to obtain a foreground mask [29].

T can be pre-defined or adaptively calculated. Such thresholding methods can typically

be categorized into 5 groups: spatial, histogram shape-based, clustering-based, entropy-

based and object-attribute-based [30]. Furthermore, a single global threshold or number

of local thresholds can be computed such as for a region or for each pixel.

Spatial methods implement higher-order probability statistics to find correlations be-

tween pixels or regions.

Histogram shape-based methods analyze the peaks and valleys of a pixel intensity his-

togram to deduce a threshold. Otsu as well as Ridler and Calvard have proposed such

methods [31, 32]. We discuss Ridler and Calvard’s method in more detail.

2.1.6.1 Ridler and Calvard’s method

A threshold, Tk, is computed using an automatic, iterative method similiar to the pop-

ular method proposed by Otsu [31]. It is computationally inexpensive but has the

disadvantage of assuming that the scene is bimodal. This assumption predicts that

there will be two distinct brightness regions in the image represented by two peaks in

the grey-level histogram of the input image. These regions correspond to the object and

its surroundings and so it is then reasonable to select the threshold as the grey-level

halfway between these two peaks (Figure 2.14).

The histogram of the current frame, It(x, y) is segmented into two parts using a thresh-

old, Titerate, which is first set to the middle value (127) of the range of intensities. For

each iteration, the sample means of the foreground pixel intensities and the sample means

of the background pixel intensities are calculated and a new threshold is determined as
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Figure 2.14: Selection of the threshold as the grey-level halfway between the two
peaks of the histogram [33].

the average of these two means. The iterations stop once the threshold converges on a

value, normally within about 4 iterations. The following formula describes this process:

Tk+1 =

∑Tk
b=0 bn(b)

2
∑Tk

b=0 n(b)
+

∑N
b=Tk+1 bn(b)

2
∑N

b=Tk+1 n(b)
(2.16)

where Tk is the threshold at the kth iteration, b is the intensity value and n(b) is the

number of occurrences of the value b in the image such that 0 ≤ b ≤ N .

2.1.7 Background maintenance

Background maintenance is necessary to ensure that a background model adapts to any

changes that occur over time in a scene. This is an on-line learning process as is shown

in Figure 2.12 and brings up a number of issues including learning rate, maintenance

schemes and update frequency [28].

2.1.7.1 Learning rate

The learning rate specifies the speed at which the background model adapts to changes

in a scene. A number of different methods for determining the learning rate have been

proposed including: fixed, dynamic, statistical and fuzzy [34, 35]. For the scope of this

dissertation the learning rates will be kept constant.
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2.1.7.2 Maintenance scheme

There are three types of maintenance schemes: blind, selective, and fuzzy [3]. The blind

update scheme is defined by the following formula:

Bt+1(x, y) = (1− α)Bt(x, y) + αIt(x, y) (2.17)

where α is a learning rate such that α ∈ [0, 1].

The primary disadvantage of implementing this is that every pixel is updated in the

same way; even foreground pixels are incorporated into the update which distorts the

background model. The selective update scheme accounts for this using the following

formulae [3]:

Bt+1(x, y) =

{
(1− α)Bt(x, y) + αIt(x, y), if f(x, y) is background

(1− β)Bt(x, y) + βIt(x, y), if f(x, y) is foreground

where β is is a learning rate such that β ∈ [0, 1].

β is chosen such that β � α so that the background model adapts quickly to a back-

ground pixel and slowly to a foreground one. β is often chosen to be 0. The disadvantage

of doing this is that the selective update scheme is susceptible to false classifications

which can lead to a permanently incorrect background model. This has given rise to

the fuzzy adaptive update scheme which allows the update formula to be “graduated”

based on the result of the foreground detection module [36].

2.1.7.3 Update frequency

Some authors favour not updating the background after every frame but rather only after

significant changes have occurred [37, 38]. Tsai et al. explore a multi-model background

maintenance framework which is influenced by dynamic and static pixels [39]. For the

scope of this dissertation only a per-frame update frequency will be implemented.

2.1.8 Background initialization

The background initialization phase will only be briefly investigated; more complex

initialization environments are beyond the scope of this dissertation.

Basic background initialization assumes that a sequence starts with a number, N , of

training images that contain few to no moving objects. A mathematical process can
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then be performed on the training sequence. Some examples include the mean and

median [40].

More advanced background initialization strategies allow for training sequences with

scenes that have moving objects present. Temporal frame-differencing is one example of

these types of initialization strategies.

2.1.8.1 Mean

The mean is very computationally inexpensive at the cost of producing a blurred back-

ground model. Furthermore, it is not at all robust to noise; its error is largely affected

by the percentage and distribution of the noise [41]. It is defined as [40]:

Bt(x, y) =

∑N−1
t=0 It(x, y)

N
(2.18)

2.1.8.2 Median

The first N training frames are used to determine the temporal median from the input

video. For any real probability distribution a median is defined as any real number m

that satisfies the following inequalities [24]:

P (X ≤ m) ≥ 1

2
and P (X ≥ m) ≥ 1

2
(2.19)

An advantage of using a median as opposed to an averaging method is that the resulting

initialized background is more robust to outliers provided that the noise occupies less

than 50% of the data [41]. This is typically achieved by first sorting the values using a

selection sort or insertion sort and then selecting the middle value from the distribution.

The insertion sort is less computationally expensive; it is O(k) at its best, compared to

the selection sort which is O(n2) at its best.

2.1.8.3 Temporal frame-differencing (persisting pixel)

Temporal frame-differencing avoids the assumption that a frame sequence starts with the

absence of foreground objects [42]. Two different sets of frame-differencing formulae are

used depending on a pixel’s stability. Using Equations 2.20 and 2.21, a pixel is labeled

as stable if it is persistently classified as part of the background for Nstable frames.

FDt(x, y) = |It(x, y)− It−1(x, y)| (2.20)
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I(x, y) ⊂
{

foreground, if FDt(x, y) > T

background, otherwise
(2.21)

It is assumed that every pixel of the background will eventually be uncovered. Once

classified as stable the initialized background pixel value is taken as the average of

the Nstable pixels, which were persistently classified as part of the background, and the

usual frame-differencing formulae, Equations 2.14 and 2.15, are used perform foreground

detection.

2.1.9 Background modeling

Bouwmans [3] provides an excellent literature survey of more than 300 traditional and

recent background modeling techniques. Using this as a reference, at least two example

techniques of each sub-category will be discussed briefly.

2.1.9.1 Basic

These methods typically make use of a single mathematical process to model the back-

ground. Methods such as these prove to be too simple for dynamic backgrounds such

as those with sudden illumination changes. Examples include the median, average and

histogram analysis [43, 44, 45]. The median and average are computed similarly to

equations 2.19 and 2.18 respectively.

2.1.9.2 Statistical

Statistical processes are used to distinguish background pixels from foreground pixels.

These provide a good framework to construct a background model that is robust to

dynamic backgrounds and numerous techniques have been developed. These can be

further categorized into Gaussian, support vector and subspace learning models [46].

Gaussian models assume that a Gaussian function can be used to represent the history

of the intensity values of a pixel. Background intensity values can then be predicted.

More information regarding how this function is used is provided in Section 2.1.9.5.

The Gaussian function is the probability distribution function (PDF) of a normally

distributed random variable. It is defined as follows:

G(x) =
1

σ
√

2π
e−

1
2
(x−µ
σ

)2 (2.22)

where µ is the expected value and σ is the variance of the distribution.
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Figure 2.15: A mixture of Gaussian distributions can be employed to represent the
history of pixel intensity values [47].

A number of variations have been proposed including a single Gaussian, Gaussian mix-

ture model (GMM) (see Figure 2.15) and mixture of general Gaussians [6, 48, 49]. The

choice of of the kernel function is crucial to its predictive performance. In order to

exploit this authors have either employed parameter learning techniques or multiple

models with different parameter values in order to improve classification accuracy [50].

Some authors have combined a Gaussian model with other approaches such as neural

networks, kernel density estimation (KDE) and Markov random fields [51, 52, 53]. Tech-

niques such as KDE model the history of pixel values to estimate the background pixel’s

values. Then, if any pixel in the current image deviates significantly from its predicted

value it is classified as part of the foreground. A KDE estimator typically takes the

following form:

ph(x) =
1

nh

n∑

i=1

K(
x− xi
h

) (2.23)

where ph(x) is the probability that the pixel belongs to the background. K is a scaled

kernel (like the Gaussian mentioned in section 2.1.9.2) and h is the kernel bandwidth.

n is the number of samples that are considered.

The bandwidth value, h, allows for a trade-off between false positives and false negatives.

When h is too small, noisy estimates are produced and it is possible to misclassify a

pixel as part of the foreground. Alternatively, if the bandwidth is too large the kernel is

over-smoothed and it is possible to misclassify a pixel as part of the background. Figure

2.16 shows the effect of different bandwidth values for a PDF.
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Figure 2.16: KDE with different bandwidths. Grey corresponds to the true density
of a standard normal distribution. Red, black and green correspond to a KDE with

h=0.05, 0.337 and 2 respectively [54].

The estimation is also influenced by n. The larger n is, the more closely the kernel is

approximated, and the smaller the bandwidth will have to be to avoid over-smoothing.

If there are few samples and h is too small, noisy estimates may result.

Support vector models implement sophisticated statistical models such as support vector

machines (SVM), support vector regression (SVR) and support vector data description

(SVDD) to model a background [55, 56, 57].

SVM’s are similar to two-layer neural networks (see section 2.1.9.4). They makes use

of an optical flow value2 and inter-frame difference as background features to optimally

separates data into two categories through the construction of an n-dimensional hyper-

plane [55]. Feature vectors located near the hyperplane are known as support vectors,

which comprise the background model. The model parameters influence the accuracy

of the model as shown in Figure 2.17.

SVR models each background pixel as a function of intensity [56]. SVDD does not model

the background using a probability function but rather as an analytical description of

2Optical flow is the distribution of the apparent velocities of objects between two frames in a video
sequence.
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Figure 2.17: Under-fitting and over-fitting is dependant upon the selection of the
model parameters [58].

the decision boundary used to classify background and foreground pixels. This has the

advantage of the model not being bounded by the accuracy of the estimated PDF [57].

2.1.9.3 Cluster

The cluster model approach is a type of vector quantization and is based on the premise

that each pixel in a frame can be temporally represented by clusters of features or tokens

derived from the input image. A pixel is added to a cluster with the highest similarity.

This similarity can be measured using a distance measure between points in the feature

space (see Figure 2.18). Examples of cluster models include K-means, Codebook and

basic sequential [7, 59, 60].

Figure 2.18: Background modeling using clusters of features.
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Data: k datapoints, i clusters
Result: Allocated cluster centres
while Cluster centres have been modified do

read kth datapoint;
assign kth datapoint to cluster whose centre is nearest ;
if ith cluster is empty then

assign a random datapoint to empty cluster;
else

Replace the ith cluster with the mean of the datapoints in the cluster;
end

end
Algorithm 1: The k-means clustering algorithm [61].

The K-means models assign a group of clusters to each pixel in a frame. The model

adapts to illumination and background variations by ordering clusters according to how

well they represent the background. A fixed number of clusters are chosen. Cluster-

centres and point-cluster allocations are chosen in such a way as to minimize error

[59]. Since there are too many possibilities, these are determined by means of K-means

clustering (Algorithm 1). New pixels are classified according to whether or not their

corresponding cluster is part of the background.

An advantage of k-means models is that they are computationally simple while a disad-

vantage is that they are sensitive to initialization and statistical outliers.

Figure 2.19: K-means clustering using: only intensity (middle) and only colour
(right).

Codebook models implement the per-pixel construction of codewords that comprise a

codebook [7]. These codewords are background features, such as brightness boundaries

and colour distortion metrics, and represent a compressed form of the background model.

The number of codewords for a pixel is a function of the behaviour of the pixel. A pixel

is classified as foreground if its colour distortion is less than a specified threshold and
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if its brightness lies within a range specific to the pixel. The compressive nature of the

codebook model ensure inexpensive computations.

Advantages of Codebook-based background modeling include better handing of local

and global illumination changes as well as a reduction in artifacts that have resulted

from image acquisition, digitization and compression (Figure 2.20).

Figure 2.20: An example of block artifacts that have resulted from image compression.

A number of improvements on this original approach have been proposed that incorpo-

rate different colour models as well as multi-layer, block-based, multi-scale and hierar-

chical approaches [62, 63, 64, 65].

2.1.9.4 Neural networks

The neural network approach uses what are known as “training patterns” to estimate

statistical parameters [1]. A set of patterns, called a “training set”, is used to obtain a

decision function through a process called learning. The decision function is employed to

classify a pixel or region as background or foreground. A model is constructed with the

means of the weights of a neural network that have been trained on a number of clean

frames. Weights are assigned and background features are used to compute pattern

vectors. These weights and vectors are then fed into the decision function. The decision

function is defined by equation 2.24 and illustrated by Figure 2.21.

d(x̄) =

n∑

i=1

wixi + wn+1 (2.24)

where wi is the weight and xi is the pattern vector at index i.

If d(x̄) exceeds a specified threshold the pixel or region is classified as part of the back-

ground. Figure 2.22 shows a number of training patterns used to recognize a specific

shape. Noisy versions of these shapes are included to make the model more robust.



Chapter 2. Literature Review 24

Figure 2.21: An illustration of the decision function or “threshold logic unit”[66]. For
the sake of simplicity the wn+1 term (see Equation 2.24) is not included.

Figure 2.22: A variety of shapes used as training data [1].

Examples of neural networks that have been applied to background modeling include

general regression, multivalued, competitive, dipolar competitive, self-organizing and

growing hierarchical self-organizing neural networks [67, 68, 69, 70, 71, 72].

General regression neural networks implement an unsupervised Bayesian classifier in a

neural network architecture to model the background [67]. The weights of the network

aid in updating and maintaining the background model effectively.

Multivalued neural networks are able to detect and correct some of the errors that are

produced by the mixture of Gaussians algorithm [68]. This type of network is able to

represent non-numerical states which is particularly useful when designating qualitative

labels such as ”foreground”, ”background” or ”shadow”.
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2.1.9.5 Linear systems theory: Estimation

Linear systems theory, a subset of control theory, describes linear functions that can be

used to estimate a discrete-time signal [2]. When applied to background modeling the

history of pixel values is used to estimate the background pixel’s values. A number of

estimators have also been explored such as the Wiener, Kalman and Chebychev filter

[73, 74, 75]. However, they are well-suited to handle only gradual illumination changes

and will not be explored in much detail here [3].

The Wiener filter is a linear minimum mean square error (MMSE) estimator that is

typically used to remove unwanted noise from a signal (Figure 2.23). It assumes that

an image is a sample from a correlated Gaussian random noise field combined with

a statistical model of the measurement process [73]. Its main advantage is that it

reduces the uncertainty of a pixel value by accounting for the pixel time variation. A

disadvantage is that the history of values is susceptible to corruption by moving objects.

Figure 2.23: The left image is the original and the middle image is the original to
which white noise has been added. The right image is the result of a Wiener filter

applied to the middle image [76].

The Kalman filter is an optimal estimator of the state of processes. It is based on

the premise that a process can be modeled by a linear system and that the process

and measurement noise is white and has a zero-mean Gaussian distribution [74]. The

Kalman filter is keeps track of the estimated state of the system and the variance of the

estimate. The estimate is updated using measurements and a state transition model.

Equation 2.25 describes the Kalman filter.

Ēk = KkZk + (1−Kk)Ēk−1 (2.25)

where Ēk is the current estimation, Kk is the Kalman gain, Zk is the measured value

and Ēk−1 is the previous estimate.
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Figure 2.24: An overview of the Kalman filtering process [77].

2.1.9.6 Advanced statistical models

Complex statistical models are used to distinguish background from foreground. These

include mixture, hybrid, non-parametric and multi-kernel models [74, 78, 79, 80]. Mix-

ture models are very similar to Gaussian mixture models but make use of a distribu-

tion other than a Gaussian. Examples include Student-t and Dirichlet mixture models

[56, 78].

The Dirichlet PDF is defined by the following equation:

n(x̄) = Z
∏

i

xαi−1i (2.26)

where Z is a constant chosen so that the integral of n(x̄) is 1 and ᾱ is a Dirichlet

distribution.

Multi-kernel models incorporate different colour representations and multiple kernel rep-

resentations to construct an enhanced feature space [80]. A grouping-based algorithm

is then implemented on the space to classify pixels as background or foreground.

2.1.9.7 Discriminative and mixed subspace learning

There are two types of subspace learning methods: reconstructive [81] and discrimina-

tive [82]. A reconstructive approach considers the variability of the training data it has

gathered while trying to be as informative as possible regarding the approximation of the

original data. This means that reconstructive representations are not task-dependent.
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On the contrary, a discriminative approach is task-dependent. Furthermore, it is compu-

tationally and spatially far more efficient and often provides better classifications than

a reconstructive approach. Ultimately, the only advantage of reconstructive subspace

learning is that it allows for unsupervised learning. Therefore, most authors imple-

menting these types of subspace learning make use of discriminative or mixed subspace

models.

The Incremental Maximum Margin Criterion (IMMC) [83] is a type of discriminative

subspace learning algorithm that derives a subspace from sequential data samples. The

model is updated incrementing the eigenvectors of the criterion matrix.

An example of a mixed subspace model is the one proposed by Marghes et al. [82]. They

combine principle component analysis (PCA) (reconstructive) with Linear Discriminant

Analysis (LDA) (discriminative). PCA is used to model the primary distribution of the

pixel values and LDA is used to distinguish background pixels from foreground pixels.

2.1.9.8 Robust subspace models

A robust subspace model distinguished background pixels from foreground pixels using

low-rank and sparse decomposition. This is achieved using Robust Principal Compo-

nents Analysis (RPCA), Robust Non-negative Matrix Factorization (RNMF) or Robust

Orthonormal Subspace Learning (ROSL) [83, 84, 85, 86, 87].

RPCA is the most popular approach; it implements Principal Component Pursuit (PCP)

to decompose a data matrix, A, and a sparse noise matrix, S, such that a data matrix

can be described as:

A = L+ S (2.27)

Using A as the training sequence, foreground objects are represented by the correlated

sparse outliers (S) and background pixels are modeled by the low-rank subspace (L).

RPCA via Sparsity Control implements a tunable parameter that varies the sparsity of

the estimated matrix and hence, the number of outliers [88].

Bayesian RPCA derives an approximate representation of the noise present and also

infers the sparse and low-rank components of the subspace model [74].
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2.1.9.9 Subspace tracking

He et al. [89] propose an algorithm called Grassmanian Robust Adaptive Subspace

Tracking Algorithm (GRASTA) which implements a Grassmanian manifold and a ro-

bust l1-norm cost function. This function tracks and estimates non-stationary subspaces

allowing for the on-line classification of background and foreground pixels. A number of

improvements of this algorithm have been proposed including t-GRASTA (transformed-

GRASTA) [90], pROST (lp-norm Robust Subspace Tracking) [91] and GOSUS (Grass-

manian Online Subspace Updates with Structured-sparsity) [92].

It is assumed that a video frame can be represented by the Equation 2.28.

V̄t(x, y) = Ūtw̄t(x, y) + s̄t(x, y) + ¯Zt(x, y) (2.28)

where Ūt is the subspace model vector, w̄t is the weight vector, s̄t is the sparse outlier

vector and Z̄t is the zero-mean Gaussian white noise vector.

pROST implements a smoothed lp-norm which outperforms GRASTA in regard to multi-

modal backgrounds [91].

GOSUS improves the accuracy of on-line subspace maintenance by incorporating a mean-

ingful structured sparsity term [92].

2.1.9.10 Low Rank Minimization

Low Rank Minimization (LRM) is a very effective approach to data-mining, however the

presence of outliers negatively affects its performance. Recently, an algorithm for robust

matrix factorization has been introduced that makes LRM robust to outliers. LRM can

now be formulated as a matrix approximation problem and can incorporate structural

information of outliers (such as foreground objects) in order to find them more effectively.

The approaches that have been developed include Contiguous Outliers Detection (COD),

Direct Robust Matrix Factorization (DRMF), Direct Robust Matrix Factorization-Row,

Probabilistic Robust Matrix Factorization and Bayesian Robust Matrix Factorization

[92, 93, 94, 95].

COD estimates the low-rank and outlier support matrix using a unified framework known

as DEtecting Contiguous Outliers in the LOw-rank Representation (DECOLOR) [92].

Assuming that the underlying background images in a video sequence are linearly cor-

related, the matrix of frames can be approximated using a low-rank matrix. Objects in

motion can then be detected as outliers in the low-rank representation.
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An advantage of formulating the problem in this way is that many of the assumptions

regarding the behaviour of the foreground are unnecessary. Furthermore, this repre-

sentation is more tolerant of global background variations. Another advantage is that

DECOLOR does not require a training sequence.

DRMF is based on the assumption that a small portion of the matrix has been corrupted

by arbitrary outliers [93]. The estimated model excludes outliers in order to get a reliable

estimation of the true low-rank structure of the matrix. This is what distinguishes

DRMF from conventional LRM.

2.1.9.11 Sparse models

There are a number of sparse model categories including structure sparsity (SS), dynamic

group sparsity and dictionary models [96, 97, 98].

The SS approach is a natural extension of the standard sparsity concept in compressive

sensing and statistical learning. It considers the model as an optimization problem

which can be solved using techniques such as the one proposed by Cui et al. [96, 99].

An overview of this technique is provided in Figure 2.25.

Figure 2.25: Overview of the framework implemented by Cui et al. [99].

Dictionary learning assumes that the current image can be sparsely represented as a

linear combination of vectors, which comprises a dictionary [3]. A static background can

then be decomposed into a foreground image and the sum of static background images.

The foreground image is estimated as a sparse error; the dynamic foreground and static

background can be modeled as signal samples that vary slowly in time with sparse

corruption. Each “atom” in the dictionary represents a variation in the background

model, which is learned from training frames [100].
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2.1.9.12 Domain transform models

The premise of this approach is that background pixels can be better distinguished from

foreground pixels by approaching the problem in a different domain. Various different

transforms have been implemented including the Fast Fourier (FFT), Discrete Cosine

(DCT), Walsh, Wavelet and Hadamard Transform [37, 101, 102, 103, 104], however,

these techniques are typically too computationally expensive for real-time applications.

The FFT approach models multi-modal backgrounds as a number of spectral signatures.

Signature inconsistencies are then used to detect changes in a scene.

Figure 2.26: Illustration of the real (left set) and imaginary (right set) steps in the
FFT transform [105] (top to bottom, left to right).

The Walsh Transform employs the mixture of Gaussian approach applied to multiple

block sizes to model the background. This is achieved by using directional coefficients to

derive the feature parameters of the Walsh Transform (Figure 2.27). These coefficients

have a strong spatial correlation. An advantage of the Walsh transform is that it is

computationally cheaper to perform than the discrete FFT and DCT.

2.2 Illumination change concepts

For the scope of this dissertation we only consider global illumination changes.

2.2.1 Sudden illumination changes

We define a sudden illumination change as a drastic change in illumination occurring

within a single frame of a video sequence. These are caused by lights switching on or

off, varying cloud cover and curtains opening or closing.
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Figure 2.27: Illustration of the steps in the Walsh transform [105] (top to bottom,
left to right).

Figure 2.28: Sudden Illumination change example [73]. The left image shows the
initial scene while the right image shows the same scene a single frame later.

2.2.2 Gradual illumination changes

We define a gradual illumination change as a steady change in illumination occurring over

no more than 60 seconds of a video sequence. These are typical in outdoor environments

and caused by the trajectory of the sun or cloud movement.

2.2.3 Phong shading model

The Phong shading model is a common model used to describe illumination [2]. It

is based on the shading model used by computer graphics which assumes that a pixel

intensity can be decomposed into an illumination value, L, and a shading coefficient, S

[9]:

I(x, y) = L.S(x, y) (2.29)

The shading coefficient is uniquely defined depending upon the reflectance of the surface

material and the actual physical structure of the object.
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Figure 2.29: Gradual illumination change examples [106]. The left column shows the
initial scene while the right column shows the same scene moments later.

The Phong shading model is described by the following equation [2]:

S(x, y) = C(x, y)[cos(i)(1− d) + d] +W (i)[cos(s)]n (2.30)

where Cp is the reflection coefficient of the object located at point P for a specific

wavelength, i is the incident angle, d is the environmental diffuse reflection coefficient

and W (i) is a function that provides the ratio of the specular reflected light and the

incident light as a function of the incident angle. Parameter s is the angle between the

direction of the reflected light and the line of sight. n is a power value which, for each

material, models the specular reflected light. Figure 2.30 illustrates some of the terms

used.
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Figure 2.30: Light striking the surface of an object [9].

2.3 Binary morphology

Morphological operators provide a non-linear approach to modify the shape of geomet-

rically related sets, as well as to reduce the amount of noise present, in a binary image.

Traditional approaches to solving these tasks such as the use of linear systems are not as

well-suited as morphological operators since they do not exploit the geometric aspects

of an image [107]. The morphological concepts that will be discussed include erosion, di-

lation and structuring elements as well as two processes that make use of them, namely,

“opening” and “closing”.

2.3.1 Erosion

Each “1” pixel that is adjacent to a “0” pixel is changed into a “0” pixel. This is defined

as follows [40]:

f(x, y) = min{I(x, y) and its neighbouring pixels} (2.31)

2.3.2 Dilation

Each “0” pixel that is adjacent to an “1” pixel is changed into an “1” pixel. This is

defined as follows [40]:

g(x, y) = max{I(x, y) and its neighbouring pixels} (2.32)
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2.3.3 Structuring element

The structuring element is a shape mask which determines which neighbouring pixels

are considered in an erosion or dilation operation. It can be any shape or size provided

it can be represented digitally and has an origin (like a box, disk or hexagon). The

choice of structuring element affects the way in which a region grows or shrinks and the

preservation of object contours. Examples of some structuring elements are provided in

Figure 2.31.

Figure 2.31: A few examples of structuring elements [108].

2.3.4 Opening

Opening is an erosion operation followed by a dilation operation. It is typically used

to remove small isolated object pixels and to smooth an object’s boundary without

changing its shape or area (Figure ). Opening is defined by Equation 2.33 [40]:

Opening(I(x, y)) = max{min{I(x, y) and neighbouring pixels} and neighbouring pixels}
(2.33)

Figure 2.32: The effect of using a 3 × 3 square structuring element to perform an
opening operation [109].
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2.3.5 Closing

Closing is a dilation operation followed by an erosion operation. It is typically used to

close small holes within an object without changing its shape or area (Figure ). Closing

is defined by Equation 2.34 [40].

Closing(I(x, y)) = min{max{I(x, y) and neighbouring pixels} and neighbouring pixels}
(2.34)

Figure 2.33: The effect of using a 3 × 3 square structuring element to perform a
closing operation [110].

2.4 Review of sudden illumination change literature

Real-world scenes often contain dynamic backgrounds such as swaying trees, rippling

water, illumination changes and noise. While a number of techniques are effective at

handling these, sudden illumination changes such as a light source switching on/off or

curtains opening/closing continue to be a challenging problem for background subtrac-

tion [42]. In recent years a number of new segmentation techniques have been developed

to handle sudden illumination changes.

A number of texture-based methods have developed to solve the problem of sudden

illumination changes. Heikkila et al., Xie et al. and Pilet et al. make use of robust

texture features [11, 36, 111, 112]. Heikkila et al. make use of local binary pattern

(LBP) histograms as background statistics. Xie et al. assumes that pixel order values in

local neighbourhoods are preserved in the presence of sudden illumination changes. They

provide an output image by classifying each pixel by its probability of order consistency.

Pilet et al. make use of texture and colour ratios to model the background and segment

the foreground using an expectation-maximization framework. Texture-based features

work well, but only in scenes with sufficient texture; texture-less objects prove to be a

difficulty.
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Another way of dealing with sudden illumination changes is to maintain a representative

set of background models [36]. These record the appearance of the background under dif-

ferent lighting conditions and alternate between these models depending on observation.

The techniques that make use of this approach mostly differ in their method of deciding

which model should be used for the current observation. Toyama et al. [73], implement

the Wallflower system which chooses the model as the one that produces the lowest num-

ber of foreground pixels. This proves to be an unreliable criterion for real-world scenes.

Stenger et al. [113] make use of hidden Markov models but in most cases sharp changes

occur without any discernible pattern. Also, Stenger et al. and Toyama et al. require

off-line training procedures and consequently cannot incorporate new real-world scenes

into their models during run-time [114]. Sun and Yuan [115] implements a hierarchical

Gaussian Mixture Model (GMM) in a top-down pyramid structure. At each scale-level

a mean pixel intensity is extracted and is matched to the best model of its upper-level

GMM. While mean pixel intensity is useful for the detection of illumination changes,

it is also sensitive to changes caused by the foreground. Additionally, the Hierarchical

GMM does not exploit any spatial relationships among pixels which can thus output in-

coherent segmentation [36]. Dong et al. [116] employ PCA to build a number subspaces

where each represent a single background appearance. The foreground is segmented by

selecting the subspaces which produces minimum reconstruction error. However, their

work does not discuss how the system reacts to repetitive background movements.

More recently, Zhou et al. [5], Ng et al. [42] and Hwang et al. [117] have developed

techniques that have potential to be robust to sudden illumination changes. These will

be discussed in more detail in the next chapter.
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Proposed Solutions

Here we will discuss the three algorithms that were identified in Chapter 2 in greater

detail. An illustration of each proposed algorithm is provided as well as a description of

its respective background subtraction steps.

3.1 Dynamic background subtraction using spatial-colour

binary patterns

3.1.1 Introduction and algorithm overview

This background modeling technique was first developed by Heikkila et al. in 1999 using

local binary pattern (LBP) histograms as background features [11]. It was improved

upon by Heikkila et al. in 2006 and Zhang et al. in 2008 [118, 119]. Zhang et al.

made use of a Spatio-temporal LBP [119] while Heikkila et al. implemented a Centre-

Symmetrical LBP (CS-LBP) [118]. In 2010 Xue et al. combined these two approaches

[120]. Zhou et al. extended the binary pattern used by Xue et al. to also consider

colour information [5]. This novel texture feature is known as the Spatial-Colour Binary

Pattern (SCBP); The LBP and SCBP are described in more detail in Chapter 2.1.3.2.

Each pixel is modeled as a group of adaptive SCBP histograms calculated over a cir-

cular region around the pixel. Pixels in a new frame are then labeled as foreground or

background depending on a proximity measure between its SCBP histogram and those

of the model. An adaptive threshold is maintained for each pixel to improve both the

tolerance of dynamic regions and the sensitivity of static regions. Furthermore, a con-

tour refinement model is introduced. It employs a statistical operator to reduce false

positives and improve the legibility of foreground object contours.

37
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The diagram shown below provides a visual representation of the algorithm proposed

by Zhou et al. For the sake of simplicity all processes relating to this solution apply to

a single pixel and are performed on all the pixels in an image.

Figure 3.1: Overview of the Algorithm proposed by Zhou et al.

3.1.2 Background initialization

The temporal median technique (Section 2.1.8.2) is implemented to compute a median

background pixel value. An insertion sort algorithm is employed which has O(n) time

complexity at its best. Once this is completed, a SCBP histogram is computed over a

circular region of radius Rregion around the pixel and a model consisting of K SCBP

histograms is built.

However, all of the histograms in the model are not necessarily produced by background

processes so the persistence of each histogram must be considered when deciding if it

will be included as part of the background model.

A weighting technique is employed to achieve this. Each of the model histograms is

assigned its own weight, such that w0 +w1 + ...+wK = 1.0 where the magnitude of the

weights are in descending order. When initialized these histograms will have identical

bin values but will begin to differ as their respective bins and weights are updated. The

weight of a histogram is increased if it is especially similar to that of a new pixel. The
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persistence of a model histogram is directly related to its weight; the larger it is the

higher the probability it has of being a background histogram and being included in the

background model.

In order to determine which of these model histograms will be included as part of the

background model, the value for B is first determined using Equation 3.1. The value

computed for B determines the number of corresponding model histograms that are

selected to be part of the background model.

w0 + w1 + ...+ wB ≤ TB (3.1)

where the weights have been sorted into descending order. TB is a fixed threshold and

is dependent upon the number of histograms that make up the model.

3.1.3 Background modeling

A SCBP histogram is calculated for each new pixel and then compared to the model

histograms using a proximity measure as described by Equation 3.2. This measure adds

the mutual minimum histogram bins of the current frame and each SCBP histogram in

the model. An advantage of the proximity measure is that it explicitly neglects features

that only occur in one of the histograms. Furthermore, it is not very computationally

expensive having a time complexity of O(n) for the number of histogram bins.

∩ (ā, b̄) =

N−1∑

n=0

min(an, bn) (3.2)

where ā and b̄ are histograms and N is the number of bins in each histogram.

3.1.4 Foreground detection

If the proximity measure value for at least one of the B background model histograms

is greater than a threshold, Tp, the pixel is classified as background, otherwise the pixel

is classified as foreground.

Tp is an adaptive threshold that is maintained (for each pixel). The advantage of this is

that static regions become more sensitive while dynamic regions have a higher tolerance

to noise (Figure 3.2). The threshold is updated as follows:

Tp(x, y) = αp(s(x, y)− 0.05) + (1− αp)Tp(x, y) (3.3)
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where αp is a learning rate such that αp ∈ [0, 1]. s(x, y) is a similarity measure of

the highest value between the current frame’s SCBP histogram bins and those of the

histograms which comprise the model. Zhou et al. do not specify which similarity

measure they used; the L1 or L2 norm1 can be used, 0.05 is an empirical value introduced

by Zhou et al.

Figure 3.2: The adaptive theshold Tp(x, y) is more sensitive to noise in static regions
and more tolerant of noise in dynamic regions [5].

3.1.5 Contour refinement

A disadvantage of block-based processing is that pixels near the edges of objects are often

misclassified resulting in illegible object contours. Zhou et al. refine these contours using

a statistical operator to reduce false positives and negatives. These are based upon two

assumptions. A pixel should only be successfully classified as part of the foreground if its

intensity value deviates much from the average pixel intensity of its pixel neighbourhood

and its colour composition changes much from that of its pixel neighbourhood.

Therefore, a binary mask is constructed as follows and is convolved with the output of

the foreground detection module:

Ωi =





1, if [di >= ξstdi] and [di/ḡi ≥ ε1],
1, if|(ri, gi, bi)− (r̄i, ḡi, b̄i)| ≥ ε2,
0, otherwise

(3.4)

1A norm is a function that assigns a (strictly positive) length or size to each vector in a vector space.
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where di = abs(gi − ḡi) is the absolute deviation of intensity from the average and r, g

and b are chromaticity coordinates calculated by r = R/(R+G+B), g = G/(R+G+B)

and b = B/(R + G + B). r̄i, ḡi, b̄i and ḡi are average values computed over the same

region as that of the SCBP histogram. The parameters ξ, ε1 and ε2 are empirically set

tuning parameters.

Figure 3.3 shows how the module can improve the output by making object contours

more legible.

Figure 3.3: The foreground mask before (left) and after (right) contour refinement
[5].

3.1.6 Background maintenance

3.1.6.1 Background model

The model is updated selectively depending on the value of the calculated proximity

measures. If the proximity measure values of all the K model histograms are below the

threshold, Tp, the histogram with the smallest weight has its bins replaced by those of

the current pixel and is given a small initial weight of 0.01. No further processing is

required in this case.

However, If the proximity measure value for at least one of the K model histograms is

greater than Tp then only the histogram that produced the highest proximity measure

is updated using Equation 3.5.

m̄K = αbh̄+ (1− αb)m̄K (3.5)

where m̄K is the model SCBP histogram, h̄ is the current frame SCBP histogram and

αb is a learning rate such that αb ∈ [0, 1].
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Furthermore, the weights of all K model histograms are updated as follows:

wK = αwMK + (1− αw)wK (3.6)

where αw is a learning rate such that αw ∈ [0, 1]. MK has a value of 1 for the model

histogram with the highest proximity measure and 0 for the rest.

3.1.6.2 Contour refinement model

The average and standard deviation of the resulting background pixels are updated as

follows:

ḡi = βgi + (1− β)ḡi (3.7)

stdi =
√
β(gi − ḡi)2 + (1− β)std2i (3.8)

The chromaticity coordinates, r̄i, ḡi, b̄i, are updated in the same way as was done for ḡi.

3.2 Background subtraction using a shading model and a

Gaussianity Test

3.2.1 Introduction and algorithm overview

Ng et al. make use of a technique which was first developed by Ojeda et al. [121] and

can be applied to any time series data that is invertible and causal2. This technique

employs a Gaussianity Test which determines if a set of samples are part of a Gaussian

distribution. Gurcan et al. [122, 123] applied this test to mammogram images for the

detection of micro-calcification.

The approach proposed by Ng et al. implements a hierarchical framework that uses a

combination of a pixel-based shading model and a block-based Gaussianity Test. The

Gaussianity Test allows for object detection while the shading model handles illumina-

tion changes. Figure 3.4 provides a visual representation of the algorithm proposed by

Ng et al.

3.2.2 Background initialization

Temporal frame-differencing is implemented to initialize the background model (see

Section 2.1.8.3).

2Data is “causal” if the future value of a variable is a mathematical function of past values.
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Figure 3.4: Overview of the algorithm proposed by Ng et al.

3.2.3 Background modeling and foreground detection

3.2.3.1 Gaussianity Test

The method proposed by Ng et al. is based on the assumption that sensor noise is both

spatially Gaussian, and temporally uncorrelated. Then, if a difference frame is taken

(Equation 2.14), only Gaussian noise and foreground objects should remain since the sum

of independent Gaussian random variables is Gaussian [42]. Under these assumptions,

they deduce that background pixels will be Gaussian distributed and foreground pixels

will be non-Gaussian distributed. Therefore background pixels can be distinguished

from foreground pixels using a Gaussianity Test performed on a difference frame, Dt.

If a set of samples, such as a region of pixels, is Gaussian distributed, the non-central

moments of the distribution converge on their theoretical values as the sample size tends

to infinity. These theoretical values are as follows:

J1 → µ

J2 → σ2 + µ2

J3 → σ3 + 3σ2µ

J4 → µ4 + 6µ2σ2 + 3σ4

(3.9)

Therefore, a Gaussianity Test is deduced such that its resultant test statistic is expected

to be close to zero when a set of samples is Gaussian distributed. Ng et al. define this

statistic similarly to Gurcan et al., using Equation 3.10 [122, 123]; if the theoretical

values of the non-central moments are used Equation 3.10 will be equal to 0.

H(J1, J2, J4) = J4 + 2J4
1 − 3J2

2 (3.10)



Chapter 3. Proposed Solutions 44

Where Jk is the kth moment of a probability distribution. Moments are discussed in

greater detail in Section 2.1.3.3.

Ng et al. compute these moments and corresponding Gaussianity Test for each M ×M
non-overlapping block in an image (also known as a tile). Figure 3.5 illustrates this.

Consequently, Jk is a moment defined by Equation 3.11:

Ĵk(x, y) =
1

MN

N−1
2∑

m=−M−1
2

N−1
2∑

n=−N−1
2

[It(x+m, y + n)]k (3.11)

where It(x, y) is a sample of an input image I at index (x, y), k is the moment number

and M ×N is the block size.

Figure 3.5: An Illustration of a non-overlapping block or tile [124].

3.2.4 Foreground detection

If a set of samples in a block has a Gaussianity Test statistic that is greater than a

predefined threshold, τ , then the block is considered to contain foreground pixels. This

is described by Equation 3.12. Foreground detection is only completed for pixels within

these blocks.

block =

{
contains foreground pixels, if H > τ

contains background pixels, otherwise
(3.12)

Foreground detection is done using the frame-differencing method discussed in Chapter

2.1.6. Ng et al. employ an adaptive threshold, Tfd,ad, when using this method as

discussed in Chapter 2.1.6.1.

Once the foreground mask has been generated, morphological filtering is performed on

the foreground mask in order to remove noise. Morphological operations are discussed
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in greater detail in Chapter 2.3. Ng et al. perform one closing operation followed by

one opening operation [40].

3.2.4.1 Shading model

The change in pixel intensity values caused by photometric distortion is not constant -

even for global illumination changes. Hence, the previous assumption that background

regions are Gaussian distributed does not hold true in the presence of gradual and sudden

illumination changes. Ng et al. introduce a shading model proposed by Skifstad and

Jain [9] (derived from the Phong shading model described in Section 2.2.3) in order to

make it robust to sudden and gradual illumination changes.

The model states that a pixel intensity can be decomposed into a product of a shading

coefficient S(x, y) and an illumination value Li [9]:

I(x, y) = LiS(x, y) (3.13)

It is then assumed that if there is no physical change between two frames, such as a

moving object, the ratio shown in Equation 3.14 will be constant and independent of

the shading coefficients [9]:

R(x, y) =
I1(x, y)

I2(x, y)
=
Li,1
Li,2

(3.14)

Ng et al. modify their original assumption in order to account for illumination changes; if

no foreground objects exist in a scene, the ratio of pixel intensities between two frames

should remain constant and therefore be Gaussian distributed [42]. So by extending

the Gaussianity Test to include the shading model the background model can be made

robust to sudden illumination changes. Equation 3.10 is modified follows:

Ĵk(x, y) =
1

M2

M−1
2∑

m=−M−1
2

M−1
2∑

m=−M−1
2

[Rgt(x+m, y + n)]k (3.15)

where

Rgt(x, y) =
It(x, y)

Bt−1(x, y)
(3.16)

3.2.4.2 Shading model investigation

In the event of a light-to-dark sudden illumination change, such as the sun moving

behind clouds, Rgt(x, y) ∈ [0, 1]; if a dark-to-light sudden illumination change occurs,
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Rgt(x, y) ∈ [1,∞). Furthermore, the former tends toward 0 when an illumination change

has occurred while the latter tends toward∞. This means that the resultant Gaussianity

test statistics for these two scenarios will vary greatly, even if the change in intensity

values is identical. It is therefore unlikely that correct foreground region classifications

will be made for these scenarios if they employ the same Gaussianity test threshold, τ .

After performing empirical tests we found that the ideal threshold of each scenario can

vary by several orders of magnitude. Furthermore, our tests show that it is possible to

produce negative Gaussianity test statistics when Rgt(x, y) ∈ [0, 1]. Ng et al. do not

discuss these possibilities; the test statistic threshold that they implement is positive and

very large (τ = 1× 105) which suggests that they only anticipate lighting changes from

dark to light. Since both types of lighting changes are possible it is worth investigating

the effect that this oversight has on classification accuracy. It is also worth investigating

the classification of the Gaussianity test when it employs a shading model that forces

Rgt(x, y) ∈ [0, 1] as in Equation 3.17 and Rgt(x, y) ∈ [1,∞) as in Equation 3.18.

Rgt(x, y) =





It(x,y)
Bt−1(x,y)

, if It(x, y) < Bt−1(x, y)
Bt−1(x,y)
It(x,y)

, otherwise
(3.17)

Rgt(x, y) =





Bt−1(x,y)
It(x,y)

, if It(x, y) < Bt−1(x, y)
It(x,y)

Bt−1(x,y)
, otherwise

(3.18)

We investigate both types of sudden illumination change as well as a scenario where illu-

mination change is not present as a control group. Furthermore we investigate two types

of sample distribution changes: A change from a Gaussian to non-Gaussian distributed

block (which should yield a foreground region classification) as well as from a Gaussian

to Gaussian distributed block (which should yield a background region classification).

It is not necessary to investigate changes from a non-Gaussian to Gaussian distributed

block and from a non-Gaussian to non-Gaussian distributed block; we assume that our

background model does not contain foreground objects and therefore the shading model

ratios within any block should always be Gaussian distributed. Hence, a total of eighteen

Gaussianity Test statistics are computed.

Gaussian samples are generated using a Gaussian random number generator while non-

Gaussian samples are generated using a random number generator that uses atmospheric
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noise3 as its source [125]. The mean of a Gaussian distribution changes from 0.9 to

0.1 when simulating an illumination change from light-to-dark and vice versa. Each

Gaussian distribution has a standard deviation of 0.03. Each non-Gaussian distribution

changes from values that range between 0.8 and 1.0 to values that range between 0.0 and

0.2 when simulating an illumination change from light-to-dark and vice versa. When

a sudden illumination change does not occur, as is the case for our control group, the

distribution mean, or range, remains constant.

Our investigation considers Two 17×17 blocks that represent the same region in a scene

before and after a sudden illumination change has (or has not) occurred. As mentioned,

a block should only be classified as background if the samples within it remain Gaussian

distributed and, ideally, these classifications should not differ in the presence of a sudden

illumination change.

Figure 3.6: The Gaussianity test statistics produced using Equations 3.16, 3.17 and
3.18, respectively.

The results of our investigation are shown in Figure 3.6. In all three scenarios, and for

all three equations, blocks that remain Gaussian distributed produce test statistics that

are lower than when a block changes to a non-Gaussian distribution. This verifies Ng et

al.’s assumption regarding the premise of their background model.

We first consider the scenarios were illumination changes are present. As we suspected,

Equation 3.16 produces two different Gaussianity Test statistics that differ by many

orders of magnitude, for the two types of sudden illumination change. This is also true

for Equation 3.18, however the statistics are within the same order of magnitude. Of all

three equations, Equation 3.17 is the only one that produces Gaussianity Test statistics

that can be distinguish foreground from background blocks using the same threshold.

3Atmospheric noise is radio noise caused by natural atmospheric processes resulting primarily from
lightning discharges in thunderstorms.
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This is due to the scaling that takes place by the various equations; Equation 3.17

performs better because the shading model is normalized.

However, even if Equation 3.17 is used, another threshold is necessary for the control

group scenario. For this reason, as well as the need for more legible foreground object

contours, Ng et al. perform an additional frame-differencing step before generating a

foreground mask.

It should be noted that the Gaussianity Test statistics that were produced are not large

enough to be effectively distinguished using the threshold value employed by Ng et al..

Ng et al. mention that this value should be empirically set for the sequence at hand

and depends on the amount of variation in the background. It is also possible that

the Gaussianity Test is too lenient for the specific changes in distribution we used to

simulate illumination changes (or the absence thereof); it is reasonable to assume that

more obvious changes in sample distribution will produce test statistics capable of being

distinguished by the threshold that Ng et al. use.

It is interesting to note that Equation 3.17 produces test statistics for the control group

that are larger than those produced for the other two scenarios while the opposite is true

for the other two equations. This is possibly due to the fact that Equation 3.17 tends

toward 0 when an illumination change has occurred while the other two equations tend

towards∞ (if we choose to ignore Equation 3.16 since it tends to both). We were unable

to draw a conclusion by examining Equation 3.10 analytically and therefore cannot

be certain of this or whether the control group will always produce larger statistics.

However, if this is the case Equation 3.17 is once again superior to the other two equations

because the control group will still be classified as a possible foreground block and can

be distinguished using the frame-differencing module.

In conclusion, we have validated our suspicion that Ng et al.’s oversight regard the

shading model does negatively influence the classification accuracy of their solution.

Furthermore, we found Equation 3.17 to be superior to the other two equations. This

will be taken into consideration when we investigate possible improvements to Ng et

al.’s solution in Chapter 5.

3.2.5 Background maintenance

Ng et al. do not explicitly describe the background maintenance technique that they

chose to implement. Their solution is a continuation of their older work which makes

use of a modified form of the selective maintenance scheme described in Section 2.1.7.2.

Their older work makes use of a small fixed threshold in order to distinguish pixels that
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have a particularly high likelihood of belonging to the background [40]. This is described

by Equation 3.19.

Bt(x, y) =





Bt−1(x, y), if Dt(x, y) ≥ Ta
It(x, y), if Dt(x, y) < Tf

αIt(x, y) + (1− α)Bt−1(x, y), if Tf ≤ Dt(x, y) < Ta

(3.19)

where Tf is fixed and smaller than Ta and α is a learning rate such that α ∈ [0, 1]

Ng et al.’s latest work does not explain how this maintenance scheme should behave after

having introduced the Gaussianity test module to their solution. We take the liberty

of implementing the same equation, but only for regions that have been classified as

possibly containing foreground pixels by the Gaussianity test. If this is not the case, the

pixel takes on the value of the current frame.

3.3 Non-parametric KDE

3.3.1 Algorithm overview

This solution is an extension of the popular kernel density estimation (KDE) technique

first proposed by Elgammal et al. [126]. This technique maintains two non-parametric

background models, long-term and short-term, in order to exploit their respective ad-

vantages at eliminating false positive detections.

Vemulapalli and Aravind extends the model from the temporal to spatio-temporal do-

main by using 9-dimensional data points. In order to overcome the obvious increase in

computational complexity that this would cause, a hyper-spherical kernel is used instead

of the typical Gaussian kernel [127].

Furthermore, a modification is made to the short-term model in order to handle sudden

illumination changes; if a sudden illumination change is detected, the model is updated

differently so that it adapts to the change quickly [127].

The diagram shown in Figure 3.7 provides a visual representation of the algorithm

proposed by Vemulapalli and Aravind.
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Figure 3.7: Overview of the algorithm proposed by Vemulapalli and Aravind.

3.3.2 Background initialization

The background model is initialized once sufficient frames have passed to fill a preset

window of size W . Once this is complete the first background modeling and foreground

detection pass is performed, providing a binary output. The long-term and short-term

models are initialized, each eventually containing N samples (where W > N), using the

update mechanisms described in the background maintenance section.

3.3.3 Background modeling

In order to employ a spatio-temporal approach each frame is organized into 9-dimensional

data points; 3×3 blocks centred at each pixel in the frame with coordinates (x, y). Each

pass of the background modeling module entails comparing the data points of the current

frame, F0(x, y) with those of the previous frames, F1...N (x, y).

So, for each new frame a series of N−1 Euclidean distances are calculated by comparing

each current pixel’s data point to its past data-point values. The higher the value of

a Euclidean distance, the higher the probability that the current pixel is part of the

foreground. These distances are then thresholded to determine if they lie within the

radius of the discrete hyperspherical kernel, r. This radius is a function of the amount

of variation present in the background; If r is too small the estimated function will not

be smooth. This means that the estimated probability density is strongly dependent on

the observed pixel values and false positives are likely. On the contrary, if r is too large

the estimated function will be too smooth, increasing the likelihood of false negatives.
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The N − 1 binary outputs of this module are summed to produce a type of confidence

measure, M , of whether the current pixel belongs to the background. This is described

by Equation 3.20.

M =
N∑

i=1

φ

( ||F0(x, y)− Fi(x, y)||
r

)
(3.20)

where r is the radius of the hyper-sphere and

φ(u) =

{
1, if u ≤ 1,

0, otherwise
(3.21)

and ||F0(x, y)−Fi(x, y)|| is the Euclidean distance between the data points F0(x, y) and

Fi(x, y). M is then thresholded using a value, T , as described by Equation 3.22.

M

N
≤ T (3.22)

Furthermore, a modification is made to the short-term model in order to handle sudden

illumination changes. If a sudden illumination change is detected, the model is updated

differently so that it adapts to the change quickly [127]. This is discussed in more detail

in Section 3.3.5.

3.3.4 Foreground detection

The outputs of both the long-term and short-term models are used as inputs to the

foreground detection module, the output of which is described by Table 3.1. If the two

models agree on an output, the resultant foreground mask will obviously have the same

output. If only the long-term model predicts foreground, the foreground mask will prefer

the prediction of the short-term model. In the event of the short-term model predicting

foreground and the long-term model predicting a background, a check is performed to see

if the two models agree on the output of any of the neighbouring pixels being foreground.

If this is the case, the pixel is classified as a foreground pixel.

Long-term model Short-term model Output

Ol(x, y) = 0 Os(x, y) = 0 Ofd(x, y) = 0

Ol(x, y) = 0 Os(x, y) = 1 Ofd(x, y) = O′fd(x, y)

Ol(x, y) = 1 Os(x, y) = 0 Ofd(x, y) = 0

Ol(x, y) = 1 Os(x, y) = 1 Ofd(x, y) = 1

Table 3.1: The output of the foreground detection module, Ofd(x, y), which combines

the output of the short-term model, Os(x, y), and long-term model, Ol(x, y). O′
fd(x, y)

is described by Equation 3.23.
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O′fd(x, y) =

{
1, if

∑1
i=−1

∑1
j=−1Os(x− i, y − j)Ol(x− i, y − j) 6= 0

0, otherwise
(3.23)

3.3.5 Background maintenance

The long-term and short-term models are updated using a blind update and selective

update mechanism, respectively. The blind update adds a new 9-dimensional data point,

Fi(x, y), to the sample set regardless of whether it belongs to the background or fore-

ground while the selective update adds the data-point only if it belongs to the back-

ground. This means that the long-term model will always contain N samples while the

short-term model can contain any number of samples up to a maximum of N (selected

from a window of size W ). When a new data point is added the oldest data point is

removed from the sample set.

In the event of a sudden illumination change most of the frame will be falsely classified as

foreground and will continue to be classified as such unless the background model adapts

to the new lighting conditions. Vemulapalli and Aravind checks whether the percentage

of pixels that have been classified as foreground in the previous frame, α, exceeds a

threshold, Tf . If this is the case the short-term model is updated using the blind update

mechanism and will continue to do so for new frames until until the percentage falls

below a certain threshold. Eventually, once enough frames have passed which have the

new lighting conditions present, the resultant classification of the short-term model will

disagree with the long-term model. As shown in Table 3.1, if the short-term model

classifies the pixel as background and disagrees with the long-term model, then the

short-term model takes preference. This ensures that background model adapts quickly

to the new lighting conditions. However, the success of this mechanism is dependent on

the relationship between N (which is derived from W ) and α. The test requires that by

the time α falls below Tf enough frames have been blindly updated to the short-term

model to correctly classify future pixels under the new lighting conditions.



Chapter 4

Experiments and Discussion

4.1 Introduction

The three proposed solutions that were investigated in chapter 3 are implemented on

a GPU. Statistics are gathered in order to determine which of the three solutions is

superior with regard to classification accuracy and computation time. Details are pro-

vided concerning the experimental procedure, equipment, dataset and metrics that were

employed. Finally, the results of the experiments are presented and discussed.

A substantial amount of computational resources is required to process images, especially

since the size of images are ever-increasing [128]. GPU implementation is advantageous

because it provides higher computational power at a lower cost [129]. Furthermore, as

is shown in Figure 4.1 and 4.2, it is also reasonable to assume that this advantage will

not diminish soon [130].

4.2 Experimental procedure

4.2.1 Selection of tuning parameters

Each of the solutions have a number of tuning parameters. These are set to have the

same values as was employed by the original authors.

Zhou et al. set Rregion = 9, R = 2, N = 4, K = 4, Tp = 0.65, TB = 0.7, αb = αw = β =

0.01, αp = 0.9, ξ = 2.5 and ε1 = ε2 = 0.2. They do not specify which similarity measure

they used; we empirically set this to be the L2 norm. Zhou et al. also do not specify

how they initialized the weights of the model histograms; after having investigated both

53
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Figure 4.1: Theoretical peak performance for single precision [130]

Figure 4.2: Theoretical peak performance for double precision [130]

linearly and exponentially decreasing values, we empirically set w0 = 0.567, w1 = 0.321,

w2 = 0.103, w3 = 0.011 so that the values decrease exponentially.

Ng et al. set M = 17 and α = 0.1. The value for τ is empirically set for the dataset at

hand. We select a value of τ = 1 x 104.

Vemulapalli and Aravind set W = 250, N = 50 and α = 75%. However, for the the
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“Waving Trees” sequence we set W = 200 and N = 20 since the 247th frame is used for

the ground truth. They do not specify which parameters they used for the hypersphere

radius, r, and the threshold, T . We set r = 1 and T = µ+ kσ where µ is the mean and

σ is the standard deviation of the greyscale input image. k is a positive integer which is

empirically set to 6.

4.2.2 Metrics

4.2.2.1 Classification accuracy

In order to evaluate the classification accuracy we make use of the detection rate (DR),

false alarm rate (FAR) and precision (P) statistics. The formulae for these are provided

below:

DR =
#tp

#tp+ #fn
(4.1)

FAR =
#fp

#fp+ #tn
(4.2)

P =
#tp

#tp+ #fp
(4.3)

where #tp is the number of correctly classified foreground pixels (true positives), #tn is

the number of correctly classified background pixels (true negatives), #fp is the number

of incorrectly classified foreground pixels (false positives) and #tn is the number of

incorrectly classified background pixels (true negatives).

The DR statistic provides the percentage of true foreground pixels that have been cor-

rectly classified. The FAR statistic provides the percentage of true background pixels

that have been incorrectly classified. The P statistic provides the percentage of all the

foreground pixels that were detected that have been correctly classified.

4.2.2.2 Computation time

In order to measure the computation time we employ the frame-rate statistic (FR)

(equation 4.4).

FR =
#frames

time
(4.4)

where #frames is the total number of frames in the video and time is the time taken to

complete the computation in seconds. This is measured using a standard timer provided

by the programming environment.
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4.2.3 Hardware and software

The three proposed techniques that were investigated were implemented using OpenCL

v1.1 and GLSL v4.4 running on an NVIDIA GeForce GTX 760 GPU and an Intel Core

i7-4770K CPU @ 3.5 Ghz with 8192 GB of RAM.

4.2.4 Dataset

The use of a publicly available data ensures that our experiments are repeatable and al-

lows others to confirm our results. Three sequences from the publicly available Wallflower

dataset [73] are used. They contain real-life scenes of typical surveillance environments.

Furthermore, a hand-segmented ground-truth 1 is provided for a single frame at a crit-

ical point in the sequence. Each frame in a sequence is made up of 160 × 120 pixels.

Low resolutions such as these are often used in surveillance systems which require large

amounts of memory.

While the Wallflower dataset provides a ground-truth for a only one frame per sequence,

we hand-segment an additional 14 sequential ground-truths for each of the three se-

quences. This ensures that the results obtained in our experiments are statistically

sound while also providing a way to measure the persistence of the accuracy of each

solution.

The first sequence is named “Waving Trees” and contains a scene with a typical dynamic

background. It comprises 286 frames where ground-truths are provided for frames 243

to 257. These correspond to a person entering the foreground with a tree waving in the

background.

The second sequence is named “Time of Day” and contains a scene with gradual illumi-

nation changes. It comprises 5889 frames where ground-truths are provided for frames

1841 to 1855. These correspond to a person entering a room and sitting down on a

couch after enough time has passed to allow for a gradual illumination change.

The third sequence is named “Light Switch” and contains a scene with sudden illumi-

nation changes. It has 2714 frames where ground-truths are provided for frames 1856 to

1870. These correspond to a person entering a room and sitting at a desk after having

switched on a light (sudden illumination change).

Example frames from all three sequences are provided in Figure 4.3.

1The “ground truth” refers to an ideal output image used to measure the accuracy of the back-
ground/foreground classification of a solution.
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“Waving Trees” “Time of Day” “Light Switch”

Figure 4.3: Three sequences from the Wallflower dataset. The top row represents
the first training image while the middle row represents one of the images that will be
evaluated. The bottom row shows one of the hand-segmented images that will be used

as a ground truth in our experiments [73].

4.3 Experimental results

4.3.1 Experiment 1: Classification accuracy

The experimental results of the “Waving Trees”, “Time of Day” and “Light Switch”

sequences regarding classification accuracy are provided in Figures 4.4, 4.5 and 4.6,

respectively. These are average values, each with a standard deviation, computed using

the DR, FAR and P values corresponding to the 15 hand-segmented ground-truths.

4.3.2 Experiment 2: Computation time

The results of the computation time experiment are provided in Figure 4.8. These are

average FPS values computed from 15 instances.
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Figure 4.4: Classification accuracy results for the “Waving Trees” sequence.

Figure 4.5: Classification accuracy results for the “Time of Day” sequence.

4.4 Statistical analysis of results

4.4.1 Experiment 1: Classification accuracy

4.4.1.1 “Waving Trees”

From the results shown in Figure 4.4 we can see that Vemulapalli and Aravind’s solution

provides the best detection rate which is 1.62 times higher than Zhou et al.’s solution

and 2.48 times higher than Ng et al.’s solution. Ng et al.’s detection rate has the smallest
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Figure 4.6: Classification accuracy results for the “Lightswitch” sequence.

standard deviation which is 1.65 times less than Vemulapalli and Aravind’s solution and

2.04 times less than Zhou et al.’s solution.

Ng et al.’s solution provides the best false alarm rate which is 4.82 times less than

Vemulapalli and Aravind’s solution and 13.87 times less than Zhou et al.’s solution. Ng

et al.’s false alarm rate has the smallest standard deviation which is 3.92 times less than

Vemulapalli and Aravind’s solution and 99.34 times less than Zhou et al.’s solution

Vemulapalli and Aravind’s solution also provides the best precision which is 1.21 times

higher than Ng et al.’s solution and 1.35 times higher than Zhou et al.’s solution. Their

solution also provides the smallest precision standard deviation which is 23.88 times less

than Zhou et al.’s solution and 43.4 times less than Ng et al.’s solution.

4.4.1.2 “Time of Day”

From the results shown in Figure 4.5 we can see that Vemulapalli and Aravind’s solution

provides the best detection rate which is 1.51 times higher than Ng et al.’s solution and

2.22 times higher than Zhou et al.’s solution. Zhou et al.’s detection rate has the smallest

standard deviation which is 1.74 times less than Ng et al.’s solution and 1.9 times less

than Vemulapalli and Aravind’s solution.

Vemulapalli and Aravind’s solution provides the best false alarm rate which is 1.64

times less than Ng et al.’s solution and 307.27 times less than Zhou et al.’s solution.

Vemulapalli and Aravind’s false alarm rate has the smallest standard deviation which
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“Waving Trees” “Time of Day” “Light Switch”

Figure 4.7: Foreground segmentation masks of proposed solutions. The columns
correspond to the “Waving Trees” (frame 247), “Time of Day” (frame 1850) and “Light
Switch” (frame 1865) sequences respectively. The first row represents the ground truths
while the remaining rows correspond to the outputs of the solutions proposed by Zhou

et al., Ng et al. and Vemulapalli and Aravind respectively.

is 39.37 times less than Ng et al.’s solution and 1212.69 times less than Zhou et al.’s

solution.

Vemulapalli and Aravind’s solution also provides the best precision which is 1.28 times

higher than Ng et al.’s solution and 36.54 times higher than Zhou et al.’s solution. Zhou

et al.’s solution provides the smallest precision standard deviation which is 9.12 times

less than Vemulapalli and Aravind’s solution and 303.42 times less than Ng et al.’s

solution.
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Figure 4.8: Computation time results, in frames-per-second (FPS), for all three solu-
tions and all three sequences.

4.4.1.3 “Light Switch”

From the results shown in Figure 4.6 we can see that Ng et al.’s solution provides the

best detection rate which is 2.33 times higher than Zhou et al.’s solution and 4.23 times

higher than Vemulapalli and Aravind’s solution. Vemulapalli and Aravind’s detection

rate has the smallest standard deviation which is 6.26 times less than Zhou et al.’s

solution and 22.38 times less than Ng et al.’s solution.

Zhou et al.’s solution provides the best false alarm rate which is 2.27 times less than Ng

et al.’s solution and 6.44 times less than Vemulapalli and Aravind’s solution. Ng et al.’s

false alarm rate has the smallest standard deviation which is 4.28 times less than Zhou

et al.’s solution and 162.06 times less than Vemulapalli and Aravind’s solution.

Zhou et al.’s solution also provides the best precision which is 1.36 times higher than

Ng et al.’s solution and 3.50 times higher than Vemulapalli and Aravind’s solution.

Vemulapalli and Aravind’s solution provides the smallest precision standard deviation

which is 1.22 times less than Ng et al.’s solution and 6.40 times less than Zhou et al.’s

solution.
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4.4.2 Experiment 2: Computation time

4.4.2.1 “Waving Trees”

From the results shown in Figure 4.8 we can see that Zhou et al.’s solution provides the

best FPS value which is 1.24 times higher than Ng et al.’s solution and 3.81 times higher

than Vemulapalli and Aravind’s solution. Vemulapalli and Aravind’s solution also has

the smallest standard deviation which is 1.56 times less than Zhou et al.’s solution and

1.63 times less than Ng et al.’s solution.

4.4.2.2 “Time of Day”

From the results shown in Figure 4.8 we can see that Zhou et al.’s solution provides the

best FPS value which is 1.24 times higher than Ng et al.’s solution and 4.66 times higher

than Vemulapalli and Aravind’s solution. Vemulapalli and Aravind’s solution has the

smallest standard deviation which is 2.59 times less than Ng et al.’s solution and 3.1

times less than Zhou et al.’s solution.

4.4.2.3 “Light Switch”

From the results shown in Figure 4.8 we can see that Zhou et al.’s solution provides the

best FPS value which is 1.32 times higher than Ng et al.’s solution and 5.05 times more

than Vemulapalli and Aravind’s solution. Vemulapalli and Aravind’s solution has the

smallest standard deviation which is 2.73 times less than Ng et al.’s solution and 5.72

times less than Zhou et al.’s solution.

4.5 Discussion of results

4.5.1 Experiment 1: Classification accuracy

4.5.1.1 Zhou et al.’s solution

Zhou et al.’s solution performs particularly poorly in the “Time of Day” sequence. This

is attributed to the presence of large uniform regions, slow learning rates, αb and αw, as

well as a value for the threshold, TB, that is too strict.
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Zhou et al.’s solution is primarily based on texture and colour features; regions that have

very little texture and a fairly uniform colour, like the wall in the background, provide

insufficient information and cause misclassifications.

The learning rates, αb and αw are not quick enough for the background model to adapt

to the gradual illumination changes present in the sequence. If αb is too slow the

model histogram with the highest proximity measure value does not incorporate new

background information quickly enough and causes false positives. On the contrary, if

αb were too quick false negatives would be likely since not all model histograms are

necessarily caused by background processes . However, model histograms that do not

describe the background accurately enough are soon replaced by the histogram values

from the current frame. This leads us to assume that αb does not have as much of an

effect on the accuracy of the background model as does αw.

αw and TB affect the number of model histograms that are included in the background

model as is shown by Equation 3.1. If αw is too slow, or TB is too lenient, too many

model histograms are included in the background model and, since a pixel is classified as

background if even one of these suggests so, false negatives are likely. On the contrary,

if αw is too fast, or TB is too strict, too few model histograms are included in the

background model which increases the likelihood of false positives.

This, however, does not explain why Zhou et al.’s solution provides better classification

accuracy for the “Light Switch” sequence since the scene has similar uniform regions as

in the “Time of Day” sequence and is also negatively influenced by the chosen param-

eter values. The reason for this is due to the nature of the “Light Switch” sequence.

Throughout the sequence two sudden illumination changes take place before the series of

frames that are tested for classification accuracy; one from light to dark and vice versa.

When the first change occurs the background model adapts too slowly and accepts a

large portion of the scene as foreground. This persists until the next illumination change

occurs which effectively reverts the scene to one similar to where no lighting changes

had occurred yet. This allows Zhou et al.’s solution to, misleading, provide better clas-

sification accuracy than what is expected.

4.5.1.2 Ng et al.’s solution

Ng et al.’s solution performs adequately for all three sequences. However, the solution

would fair much worse for the “Time of Day” sequence if it underwent a gradual illu-

mination change from light to dark. Similarly, the solution would fair much worse for

the “Light Switch” sequence if the classification accuracy statistics were computed after
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a sudden illumination change from light to dark. This is due to an oversight in their

shading model and is discussed in greater detail in Chapter 3.2.4.2.

4.5.1.3 Vemulapalli and Aravind’s solution

Vemulapalli and Aravind’s solution performs particularly poorly in the “Light Switch”

sequence. A trade-off exists between the classification accuracy of the this sequence in

relation to the other two sequences; the classification accuracy of the “Light Switch”

sequence is greatly improved when the window size of the background model, W , is

reduced. However, this negatively influences the classification accuracy of the “Waving

Trees” and “Time of Day” sequences. This is because of the sudden illumination change

test that is performed.

As mentioned in Chapter 3.3.5, in order for this mechanism to work properly it requires

that, when a sudden illumination change has occurred, enough frames have been blindly

updated to the short-term model before the percentage of foreground pixels in the frame,

α, falls below a certain threshold, Tf . This depends on the relationship between the

number of samples in the short-term model, N (derived from the window size, W ),

and the value of α; if W is too big the background model will continue to misclassify

background pixels as foreground. However, if W is too small the background model will

misclassify foreground pixels as background because insufficient information is stored by

it to account for gradual illumination changes and background dynamics. Vemulapalli

and Aravind’s solution would benefit if two background models were maintained, for

light and dark illumination conditions, and switched when a sudden illumination change

is detected.

The trade-off between the classification accuracy of the this sequence in relation to the

other two sequences is further influenced by the value of the hyperspherical kernel radius,

r. In the “Light Switch” sequence r is too large and, as mentioned in Chapter 3.3.3,

causes false negatives. If r were to be made smaller it would negatively influence the

classification accuracy of the other two sequences, causing false positives. Vemulapalli

and Aravind’s solution would benefit if the value of r were adaptive depending on the

amount of variation present in the background.

4.5.2 Experiment 2: Computation time

The results from our experiments show us that of all the solutions, the one proposed by

Zhou et al. is the most computationally efficient followed by Ng et al. and Vemulapalli

and Aravind respectively. This order is consistent for all of the sequences. The standard
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deviation of these values is due to the fluctuating amount of available computer resources

which is caused by background processes running on the computer.

4.5.2.1 Zhou et al.’s solution

From Figure 4.8 it is evident that Zhou et al.’s solution provides the largest FPS value

for the “Light Switch” sequence followed by the “Time of Day” sequence and “Waving

Trees” sequence, respectively.

This is influenced by the amount of background variation present in a sequence; the more

dynamic it is the more often one of the model histograms will have its bins replaced by

those of the current frame. This requires more memory operations which will negatively

affect the FPS value of the sequence.

4.5.2.2 Ng et al.’s solution

From Figure 4.8 it is evident that Ng et al.’s solution provides the largest FPS value

for the “Light Switch” sequence followed by the “Time of Day” sequence and “Waving

Trees” sequence, respectively. This is influenced by the amount of background variation

present in a scene as well as the percentage of frames in the sequence that contain

foreground objects. Ng et al.’s solution only performs frame-differencing (which is a

computationally expensive module) on foreground blocks detected by the Gaussianity

Test. Since sequences with less background variation or foreground objects require

less processing, they will compute a larger number of FPS. This is reflected by the

FPS values; the “Waving Trees” sequence has the highest number of foreground blocks

followed by the “Time of Day” sequence and “Light Switch” sequence, respectively.

4.5.2.3 Vemulapalli and Aravind’s solution

From Figure 4.8 it is evident that Vemulapalli and Aravind’s solution computes the

least number of FPS of all the solutions. Their solution has much larger memory re-

quirements because it maintains a history of 250 past frames. These FPS values improve

considerably when the window size, W , is decreased.

The “Waving Trees” sequence produces a larger FPS value than the other two sequences;

this is because the W was reduced in order to accommodate the fact that the ground

truth sequence already commences from the 243th frame.
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4.6 Conclusion

Having discussed the weaknesses of all three solutions we consider which solution to

select in light of possible improvements that could be introduced to each solution.

Zhou et al.’s solution would benefit from parameter automation because different learn-

ing rates are required for different types of lighting changes. However, it is still prob-

lematic when untextured and uniform areas are present in a scene. Their solution would

require another type of feature in order to overcome this.

Ng et al.’s solution is the only one of the three that is capable of producing competitive

classification accuracy and computation time statistics without modifications. As dis-

cussed in Chapter 3.2.4.2, its classification accuracy can be improved by modifying the

shading model module. Its classification accuracy can be further improved if the mo-

ments used by the Gaussianity Test are computed for a neighbourhood around each pixel

instead of for tiles. However, this will increase the computation time of the solution.

Vemulapalli and Aravind’s solution would be the most accurate of all the solution if we

were able to automate the window size, W , so that it is reduced when a sudden illumi-

nation change is detected, or if two interchangeable background models were maintained

for light and dark illumination conditions. However, it is very computationally expensive

compared to the other two solutions.

We decide to use Ng et al.’s solution as a basis for a new solution that will hopefully

outperform all three solutions.



Chapter 5

Best Solution and Improvements

5.1 Introduction

From the experimental results gathered in chapter 4 we decided that the algorithm pro-

posed by Ng et al. is best suited to our problem space. In this chapter we investigate

possible modifications to this solution in order to make it more robust to sudden illumi-

nation changes and less computationally expensive. We then verify these improvements

by means of a number of experiments.

5.2 Proposed improvements

This section describes possible improvements to Ng et al.’s solution that were considered;

Figure 5.1 illustrates the modules of the solution that are investigated.

5.2.1 Shading Model

In Chapter 3.2.4.2 we present evidence which suggests that more accurate classifications

are possible if Equation 3.17 is implemented instead of Equation 3.16. We, therefore,

employ this equation and make two modifications to the Gaussianity Test module to

accommodate it.

Equation 3.17 requires the absolute value of each Gaussianity test statistic to be con-

sidered when comparing it to the Gaussianity test threshold. Figure 5.1 shows the part

of the Ng et al.’s solution that is modified (marked in yellow).

67



Chapter 5. Best Solution and Improvements 68

Figure 5.1: Ng et al.’s solution with coloured boxes indicating proposed modifications.

5.2.2 Calculation of moments

We compute the moments, and hence the Gaussianity Test, using M ×M local pixel

neighbourhoods (region surrounding a pixel) instead of non-overlapping blocks (tiles).

These produce better object contours than the original block-based method but are more

expensive to compute; GPU implementation affords us this.

In order to produce a moment value for a local pixel neighbourhood Equation 3.11 is

used as before, but for a sliding window of size M ×M (see Figure 5.2). Figure 5.1

shows the part of the Ng et al.’s solution that is modified (marked in red).

Figure 5.2: An illustration of a sliding window in an image [131].
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5.2.3 Computation time

Ng et al. originally compute the Gaussianity Test for a block region and then generate a

foreground mask using frame differencing, but only in the blocks that qualify as contain-

ing foreground pixels according to the Gaussianity Test. The shading model investigation

in Chapter 3.2.4.2 shows that a Gaussianity test that employs Equation 3.17 as its shad-

ing model is capable of accurately distinguishing foreground from background, using a

single Gaussianity test threshold, in all scenarios except when no sudden illumination

changes are present. While our solution would still benefit from the frame-differencing

module we decide to exclude it from the background modeling phase of our solution for

the sake of computational complexity. We believe this to be a reasonable trade-off since

the legibility of foreground objects, and hence the classification accuracy of our solution,

is greatly improved by the sliding window to the computation of moments (as described

in Section 5.2.2). Furthermore, Figure 5.3 shows that the classification accuracy results

do not change drastically while Figure 5.4 shows the improvement to computation time

that this change makes. Figure 5.1 shows the part of the Ng et al.’s solution that is

modified (marked in blue).

Figure 5.3: Comparison of classification accuracy statistics when M=17.

The absence of the frame-differencing module from background modeling phase requires

an adjustment to be made to the background maintenance and morphological filtering

module of our solution.

5.2.3.1 Background maintenance

Since we no longer include the frame-differencing module for background modeling phase,

the background maintenance scheme described in Chapter 3.3.5 is no longer valid. We
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Figure 5.4: Comparison of computation time statistics, in frames-per-second (FPS),
when M=17.

implement the selective maintenance scheme discussed in Chapter 2.1.7.2. Figure 5.1

shows the part of the Ng et al.’s solution that is modified (marked in pink).

5.2.3.2 Morphological operations

Our new pixel neighbourhood strategy for the computation of moments produces fore-

ground regions that are slightly larger than actual foreground objects. Ng et al.’s original

solution produces a more sparse foreground mask which benefits from morphological op-

erations that first grow (opening) the foreground regions before shrinking them (closing).

We employ these same morphological operations but in reverse order. Figure 5.1 shows

the part of the Ng et al.’s solution that is modified (marked in orange).

5.2.4 Parameter selection

Ng et al.’s solution has three major parameters: the size of the pixel neighbourhood that

is sampled for the computation of moments, M , the learning rate of the background

maintenance module, α, and the Gaussianity Test threshold, τ .

The value of the sum of Gaussianity test moments, and hence the test statistic value, is

scaled according to the value of M , according to Equation 3.15. The ideal Gaussianity

Test threshold only depends on the amount of variation present in the background and

is therefore empirically set. The Gaussianity test statistics that result from the use of

Equation 3.10 suggest that the threshold, τ , should be far smaller than the one suggested

by Ng et al.. We set τ = 0.01 for all three sequences despite the fact that the “Waving
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Trees” sequence would benefit from a slightly larger value for τ . Figure 5.1 shows the

part of the Ng et al.’s solution that is modified (marked in purple).

We assume that M and α are independent of one another and can therefore be optimized

separately. When optimizing M we set α = 0.1 and when optimizing α we set M = 17.

5.2.4.1 Sliding window pixel neighbourhood for moment computation (M)

We compute the same classification accuracy statistics as in Chapter 4.2.2.1 but for a

range of M values. As before, classification accuracy statistics are gathered for all three

sequences. The results of this experiment are shown in Figures 5.5, 5.6 and 5.7.

Figure 5.5: The results of the parameter optimization experiments for M , including
the detection rate, false alarm rate and precision for the “Waving Trees” dataset.

Figure 5.6: The results of the parameter optimization experiments for M , including
the detection rate, false alarm rate and precision for the “Time of Day” dataset.
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Figure 5.7: The results of the parameter optimization experiments for M , including
the detection rate, false alarm rate and precision for the “Light Switch” dataset.

In the “Waving Trees” dataset it is evident that the detection rate, detection rate stan-

dard deviation, false alarm rate and precision of the solution increases as M decreases.

We decide that M = 11 is the optimal value for this sequence.

In the “Time of Day” dataset it is evident that, similarly to the “Waving Trees” dataset,

the detection rate, detection rate standard deviation, false alarm rate and precision of

the solution increases as M decreases. It is also evident from the precision statistic, and

its standard deviation, that the solution quickly deteriorates as M increases above 15.

We decide that M = 11 is the optimal value for this sequence.

In the “Light Switch” dataset we see that the precision statistic varies mostly noticeably

and increases as M increases while the detection rate peaks at M = 15. The false alarm

rate show no obvious correlation. We decide that M = 19 is the optimal value for this

sequence.

From these results of all three sequences we can see that a trade-off exists between

the classification accuracy statistics of the “Light Switch” sequence and those of the

“Waving Trees” and “Time of Day” sequences. Taking this into consideration we select

M = 15 as the optimal parameter value since it is the largest M value possible, so as to

accommodate the “Light Switch” sequence, before the accuracy of the “Time of Day”

sequence deteriorates too drastically.

Preliminary testing indicates that the increase in computation time as M increases

is negligible. It is therefore not necessary to gather and compare computation time

statistics, for the range of M values, for the purpose of parameter optimization.

Figure 5.1 shows the part of the Ng et al.’s solution that is modified (marked in red).
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5.2.4.2 Learning rate (α)

We implement the same parameter optimization strategy as for M ; classification accu-

racy statistics for a range of α values are computed, for all three sequences. The results

of this experiment are shown in Figures 5.8, 5.9 and 5.10.

Figure 5.8 indicates that the classification accuracy statistics of the “Waving Trees”

sequence is negatively affected as α increases while the statistics corresponding to the

“Light Switch” sequence are positively affected up to a learning rate of 0.7 for its de-

tection rate and 0.4 for its precision. The detection rate of the “Time of Day” sequence

increases slowly as α increase while its precision peaks at α = 0.1 The false alarm rate

shows no obvious correlation. We decide that when α = 0.3 the solution is best able to

accommodate all three sequences.

We assume that the magnitude of the learning rate does not affect computation time

since the same number of computations are performed regardless of α’s value. It is

therefore not necessary to gather and compare computation time statistics, for the range

of α values, for the purpose of parameter optimization.

Figure 5.1 shows the part of the Ng et al.’s solution that is modified (marked in pink).

Figure 5.8: The results of the parameter optimization experiments for α, including
the detection rate, false alarm rate and precision for the “Waving Trees” dataset.
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Figure 5.9: The results of the parameter optimization experiments for α, including
the detection rate, false alarm rate and precision for the “Time of Day” dataset.

Figure 5.10: The results of the parameter optimization experiments for α, including
the detection rate, false alarm rate and precision for the “Light Switch” dataset.

5.3 Experimental results

5.3.1 Classification accuracy

The new classification accuracy statistics of the “Waving Trees”, “Time of Day” and

“Light Switch” sequences are provided inFigures 5.11, 5.12 and 5.13, respectively. These

are average values computed using the DR, FAR and P values corresponding to the 15

hand-segmented ground-truths.
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Figure 5.11: The results of the classification accuracy experiments for the “Waving
Trees” sequence.

Figure 5.12: The results of the classification accuracy experiments for the “Time of
Day” sequence.

5.3.2 Computation time

The new computation time statistics are provided in Figure 5.14. These are average

FPS values computed from 15 instances.
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Figure 5.13: The results of the classification accuracy experiments for the “Light
Switch” sequence.

Figure 5.14: The results of the computation time experiment for all three sequences.

5.4 Statistical analysis of results

5.4.1 Experiment 1: Classification accuracy

5.4.1.1 “Waving Trees”

From the results shown in Figure 5.11 we can see that Vemulapalli and Aravind’s solution

still provides the best detection rate which is 1.87 times higher than our solution followed

by Zhou et al.’s solution which is 1.15 times higher than our solution. Our detection rate

is 1.32 times higher than Ng et al.’s. Ng et al.’s detection rate has the smallest standard

deviation which is 1.65 times less than ours, followed by Vemulapalli and Aravind’s
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detection rate standard deviation which is 1.45 times less than ours. Our detection rate

standard deviation is 1.05 times less than Zhou et al.’s.

Ng et al.’s solution still provides the best false alarm rate which is 2.39 times less than our

solution. Our false alarm rate is 2.01 times less than Vemulapalli and Aravind’s solution

and 5.8 times less than Zhou et al.’s solution. Ng et al.’s detection rate still has the

smallest standard deviation which is 8.77 times less than ours, followed by Vemulapalli

and Aravind’s detection rate standard deviation which is 3 times less than ours. Our

detection rate standard deviation is 11.33 times less than Zhou et al.’s.

Our solution provides the best precision which is 1.01 times higher than Vemulapalli

and Aravind’s solution, 1.22 times higher Ng et al.’s solution and 1.37 times higher than

Zhou et al.’s solution. Vemulapalli and Aravind’s solution still provides the smallest

precision standard deviation which is 2.83 times less than ours. Our precision standard

deviation is 8.45 times less than Zhou et al.’s solution and 15.36 times less Ng et al.’s

solution.

5.4.1.2 “Time of Day”

From the results shown in Figure 5.12 we can see that our solution provides the best

detection rate which is 1.08 times higher than Vemulapalli and Aravind’s solution, 1.64

times higher than Ng et al.’s solution and 2.4 times higher than Zhou et al.’s solution.

Our detection rate has the largest standard deviation which is 1.1 times higher than

Vemulapalli and Aravind’s solution, 1.2 times higher than Ng et al.’s solution and 2.09

times higher Zhou et al.’s solution.

Our solution provides the best false alarm rate which is 1.11 times less than Vemulapalli

and Aravind’s solution, 1.83 times less than Ng et al.’s solution and 341.4 times less

than Zhou et al.’s solution. Vemulapalli and Aravind’s false alarm rate has the smallest

standard deviation which is 10.97 times less than our solution. Our false alarm rate

standard deviation is 4.5 times less than Ng et al.’s solution and 110.55 times less than

Zhou et al.’s solution.

Our solution provides the best precision which is 1.02 times higher than Vemulapalli and

Aravind’s solution, 1.31 times higher Ng et al.’s solution and 37.35 times higher than

Zhou et al.’s solution. Zhou et al.’s solution still provides the smallest precision stan-

dard deviation which is 26.41 times less than our solution, followed by Vemulapalli and

Aravind’s solution which is 2.87 times less than ours. Our precision standard deviation

is 11.49 times less Ng et al.’s solution.
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5.4.1.3 “Light Switch”

From the results shown in Figure 5.13 we can see that our solution provides the best

detection rate which is 1.81 times higher than Ng et al.’s solution, 4.22 times higher than

Zhou et al.’s solution and 7.67 times higher than Vemulapalli and Aravind’s solution.

Vemulapalli and Aravind’s detection rate has the smallest standard deviation which is

3.77 times less than our solution. Our solution has the smallest detection rate standard

deviation which is 1.66 times less than Zhou et al.’s solution and 5.94 times less than

Ng et al.’s solution.

Our solution provides the best false alarm rate which is 3.95 times less than Zhou et

al.’s, 8.95 times less than Ng et al.’s solution and 25.42 times less than Vemulapalli and

Aravind’s solution solution. Our false alarm rate has the smallest standard deviation

which is 13.53 times less than Ng et al.’s solution, 57.96 times less than Zhou et al.’s

solution and 2193.04 times less than Vemulapalli and Aravind’s solution.

Our solution provides the best precision which is 1.88 times higher than Zhou et al.’s

solution, 2.54 times higher Ng et al.’s solution and 6.58 times higher than Vemulapalli

and Aravind’s solution. Our solution has the smallest precision standard deviation which

is 2.13 times less than Vemulapalli and Aravind’s solution, 2.61 times less than Ng et

al.’s solution and 13.64 times less than Zhou et al.’s solution.

5.4.2 Computation time

From the results shown in Figure 5.14 we can see that our solution provides computation

time statistics very similar to those produced by Ng et al.’s solution. It is capable of

processing a 160 × 120 pixel sequence at more than 31.36 frames per second using a

desktop computer.

5.5 Discussion of results

5.5.1 Classification accuracy

Our solution has improved upon Ng et al.’s solution for all classification accuracy statis-

tics except for the detection rate standard deviation, false alarm rate and false alarm

rate standard deviation of the “Waving Trees” sequence as well as the detection rate

standard deviation of the “Time of Day” sequence.
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Furthermore, our solution is superior to all solutions with regard to the precision of the

“Waving Trees” sequence, the detection rate, false alarm rate, precision and precision

standard deviation of the “Time of Day” sequence as well as all the classification accuracy

statistics of the “Light Switch” sequence.

Our solution is superior to all of the other solutions with regard to its minimum perfor-

mance. This is a valuable characteristic since it reflects the versatility of our solution.

It produced a minimum detection rate of 12.39%, a maximum false alarm rate of 0.8%,

a minimum precision of 91, 01% and a maximum standard deviation of 1.73%.

The main weakness of our solution is stationary foreground objects. This occurs in the

“Waving Trees” sequence when the person pauses in front of the tree and in both the

“Time of Day” and “Light Switch’ sequence when the person sits down. The solution

adapts very quickly to new background pixel values in order to tolerate illumination

changes. When a foreground object stops moving the background model quickly assim-

ilates it into the background model. The object is misclassified as background until it

moves again.

5.5.2 Computation time

The increase in computational complexity caused by the sliding window approach to the

computation of moments is counteracted by the decrease in computational complexity

caused by the exclusion of the frame-differencing module from the background modeling

phase of our solution. The resulting computation speed of our solution is competitive

when compared to the other solutions.

5.6 Conclusion

In this chapter we set out to improve the solution provided by Ng et al. in order to

make it better than all three of the solutions that were investigated. We believe we

were successful in this endeavor, having compiled a solution with superior minimum

classification accuracy as well as a competitive processing speed.



Chapter 6

Conclusions and Future Work

6.1 Introduction

This chapter will summarize and discuss the dissertation as a whole. Finally, potential

future avenues of research are discussed.

6.2 Conclusions

In the field of computer vision, numerous background modeling techniques have success-

fully addressed the presence of gradual illumination changes in a scene. However, the

presence of sudden illumination changes continues to be a challenging problem.

The aim of this dissertation was to identify potential solutions to this problem in re-

cent literature, characterize their capabilities and compare their respective performances

when encountering a challenging dataset. Furthermore, this dissertation aimed to im-

prove one of these solutions with the hopes of outperforming all of them. We constrained

any potential solution to only make use of a single video sequence of a stationary scene

as an input, and to employ an on-line adaptive background model exclusively.

We identified and investigated three solutions and implemented them on a GPU. We

then compared each to one another with respect to classification accuracy and compu-

tation time. This was accomplished using statistical analysis performed on a number of

commonly-used metrics. We determined that the solution proposed by Ng et al. is the

best-suited for our problem space; it is the only solution capable of producing compet-

itive classification accuracy and computation time statistics for all the sequences in a

challenging dataset.
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Potential improvements to this solution were investigated, implemented and verified.

We were able to assemble a solution capable of producing a minimum detection rate of

12.39%, a maximum false alarm rate of 0.8% and a minimum precision of 91, 01%, all with

a standard deviation of no more than 1.73%. It is superior to all of the other solutions

with regard to its minimum accuracy of classification. Furthermore, the solution is

capable of computing 160× 120 frames at a minimum of 31.36 FPS.

6.3 Future work

Future work will involve further investigation into robust classification in the presence

of sudden illumination changes with hopes to further improve Ng et al.’s solution with

regard to persistent, accurate foreground detection as well as computational efficiency.

It is an active area of research in computer vision and it will be beneficial to review

recently published literature.

6.3.1 Multiple Gaussianity Tests

The Gaussianity Test that is employed by the improved solution is tuned to a specific

bandwidth, standard deviation and scale. The success of these selected parameters can

be influenced by camera properties or the size of foreground objects. We believe it will

be beneficial to explore the possible of using multiple or successive Gaussianity Tests in

order to make the solution more robust.

6.3.2 Parameter selection automation

In Chapters 4 and 5 we found that solutions often benefit from different parameter

values for different sequences. These are often influenced by the amount of variation in

the background of a sequence or the type of lighting changes that occur. We believe

it possible to automate the Gaussianity Test threshold, τ and pixel neighbourhood for

the computation of moments, M , according to these phenomena, which will make the

solution more adaptable to different environments.

6.3.3 Real-time computation

Algorithm optimization will be investigated to reduce the computation time of the im-

proved solution.
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6.3.4 Datasets

We will investigate how the improved solution reacts to other datasets. While we were

were able to optimize the parameter tuning/selection for the “Wallflower” dataset, other

datasets may vary with respect to the amount of noise present, frame size or the types

of background dynamics that are encountered and the performance of our solution may

also vary.
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Abstract—This paper investigates three background modelling
techniques that have potential to be robust against sudden and
gradual illumination changes for a single, stationary camera. The
first makes use of a modified local binary pattern that considers
both spatial texture and colour information. The second uses a
combination of a frame-based Gaussianity Test and a pixel-based
Shading Model to handle sudden illumination changes. The third
solution is an extension of a popular kernel density estimation
(KDE) technique from the temporal to spatio-temporal domain
using 9-dimensional data points instead of pixel intensity values
and a discrete hyperspherical kernel instead of a Gaussian kernel.

A number of experiments were performed to provide a com-
parison of these techniques in regard to classfication accuracy.

Index Terms—background subtraction, sudden illumination
changes.

I. INTRODUCTION

Background subtraction techniques have traditionally been
applied to object detection in computer vision systems and
have since become a fundamental component for many appli-
cations ranging from human pose estimation to video surveil-
lance. The goal is to remove the background in a scene so
that only the interesting objects remain for further analysis or
tracking. Techniques such as these are especially useful when
they can identify object regions without prior information and
when they can perform in real-time.

Real-life scenes often contain dynamic backgrounds such as
swaying trees, rippling water, illumination changes and noise.
While a number of techniques are effective at handling these,
sudden illumination changes such as a light source switching
on/off or curtains opening/closing continue to be a challenging
problem for background subtraction [1]. In recent years a
number of new segmentation techniques have been developed
that are robust to sudden illumination changes but only for
certain scenes. Our aim is to eventually identify the best-
performing solution, improve upon it, and implement it on
a GPU for real-time application.

II. RELATED WORK

A number of texture-based methods have developed to
solve the problem of sudden illumination changes. Heikkila
[2], Xie et al. [3] and Pilet et al. [4] make use of robust
texture features [5]. Heikkila makes use of local binary pattern
histograms as background statistics. Xie et al. assumes that

pixel order values in local neighbourhoods are preserved in
the presence of sudden illumination changes. They provide
an output image by classifying each pixel by its probability
of order consistency [3]. Pilet et al. make use of texture
and colour ratios to model the background and segment the
foreground using an expectation-maximization framework [4].
Texture-based features work well, but only in scenes with
sufficient texture; untextured objects prove to be a difficulty.

Another way of dealing with sudden illumination changes
is to maintain a representative set of background models [5].
These record the appearance of the background under differ-
ent lighting conditions and alternate between these models
depending on observation. The techniques that make use of
this approach mostly differ in their method of deciding which
model should be used for the current observation. Toyama
et al. [6], implement the Wallflower system which chooses
the model as the one that produces the lowest number of
foreground pixels. This proves to be an unreliable criterion
for real-world scenes. Stenger et al. [7] make use of hidden
Markov models but in most cases, sharp changes occur without
any discernible pattern. Also, Stenger et al. and Toyama et al.
require off-line training procedures and consequently cannot
incorporate new real-world scenes into their models during
run-time [8]. Sun [9] implements a hierarchical Gaussian
Mixture Model (GMM) in a top-down pyramid structure. At
each scale-level a mean pixel intensity is extracted and is
matched to the best model of its upper-level GMM. While
mean pixel intensity is useful for the detection of illumi-
nation changes, it is also sensitive to changes caused by
the foreground. Additionally, the Hierarchical GMM does
not exploit any spatial relationships among pixels which can
output incoherent segmentation [5]. Dong et al. [10] employ
principle component analysis (PCA) to build a number of
subspaces where each represent a single background appear-
ance. The foreground is segmented by selecting the subspaces
which produces minimum reconstruction error. However, their
work does not discuss how the system reacts to repetitive
background movements.

More recently, Zhou et al. [11], Ng et al. [1] and Vemu-
lapalli [12] have developed techniques that have potential to
handle, and even be robust to, sudden illumination changes.
These will be discussed in more detail in section III.



III. PROPOSED SOLUTIONS

A. Background Modeling using Spatial-Colour Binary Pat-
terns (SCBP)

This approach makes used of a novel feature extraction
operator, the Spatial-Colour Binary Pattern (SCBP), which
takes spatial texture and colour information into consideration
[11]. It is an extension of a local binary pattern which is
adapted to be centre-symmetrical and to consider only two
colour channels for the sake of computational efficiency. For
the sake of simplicity all processes relating to this solution
apply to a single pixel and are performed on all the pixels in
an image.

SCBP2N,R(xc, yc) = CSLBP2N,R(xc, yc)

+2N+1f(Rc, Gc|γ) + 2N+2f(Gc, Bc|γ) (1)

f(a, b|γ) =

{
1, a > γb
0, otherwise (2)

Where Rc, Gc and Bc are the three colour channels of the
centre pixel (xc, yc) and γ > 1 is a noise suppression factor.
The Centre-Symmetrical Local Binary Pattern (CSLBP) is
defined as:

CSLBP2N,R(xc, yc) =
N−1∑

i=0

2is(gi − gi+N ) (3)

s(x) =

{
1, x >= 0
0, x < 0

(4)

Where gi is the grey value of the neighbouring pixel at index
i and N is the number of neighbours to be compared. The
neighbours are evenly distributed on a circle around the centre
pixel with radius R. If a neighbour value does not fall exactly
on a pixel it is estimated using bilinear interpolation.

An SCBP histogram is computed over a circular region of
radius Rregion around the pixel. Using this as a feature vector
a model consisting of K SCBP histograms is built, each with
their own weight, such that w0+w1+wK = 1.0 in decreasing
order. At the start these model histograms will be identical but
will begin to differ as their respective weights are updated.

An SCBP histogram is calculated for each new frame and
then compared to the model histograms using a proximity
measure. This measure adds the mutual minimum histogram
bins of the current frame and each model histogram that
comprise the background model. The proximity measure is
defined as follows:

∩(ā, b̄) =
N−1∑

n=0

min(an, bn) (5)

Where ā and b̄ are histograms and N is the number of bins
in each histogram.

The model is updated selectively depending on the value
of the calculated proximity measures. If all the proximity
measures are below the threshold, Tp, the model histogram
with the lowest weight has its bins replaced with those of the

current frame. If at least one proximity measure is above the
threshold then only the background histogram that produced
the highest proximity measure is updated using the following
formula:

m̄k = αbh̄+ (1− αb)m̄k (6)

Where m̄k is the model SCBP histogram, h̄k is the current
frame SCBP histogram and αb is a learning rate such that
αb ∈ [0, 1].

Furthermore, the weights of the model are updated as
follows:

wk = αwMk + (1− αw)wk (7)

Where αw is a learning rate such that αw ∈ [0, 1] and Mk is
1 for the best-matching histogram and 0 for the rest.
Tp is an adaptive threshold that is maintained (for each

pixel). The advantage of this is that static regions become
more sensitive while dynamic regions have a higher tolerance.
The threshold is updated as follows:

Tp(x, y) = αp(s(x, y)− 0.05) + (1− αp)Tp(x, y) (8)

Where αp is a learning rate such that αp ∈ [0, 1] and s(x, y)
is a similarity measure of the highest value between the
current frame’s SCBP histogram bins and those of the model
histograms.

In order to determine the foreground mask the value for n
in the following equation is first determined.

w0 + w1 + ...+ wn ≤ Tw (9)

Where the weights have been sorted into descending order.
Tw is a fixed threshold and is dependent upon the number of
histograms that make up the model. The calculated value for
n determines the number of corresponding model histograms
which are selected to be part of the background model. The ad-
vantage of using this weighted technique is that the persistence
of a model histogram is directly related its weight. Persistence
needs to be considered because all of the model histograms are
not necessarily produced by background processes; the bigger
the weight of a model histogram, the higher the probability it
has of being a background histogram.

If the proximity measure values for all the background
model histograms are smaller than the threshold Tw the pixel
is classified as background. If the proximity value for at least
one of the background models is greater than Tw then the pixel
is classified as foreground.

Furthermore, object contours are refined using a statistical
operator to reduce false positives. These are based upon two
assumptions. A pixel should only be successfully classified
as part of the foreground if its intensity value deviates much
from the average pixel intensity of its pixel neighbourhood
and its colour composition changes much from that of its pixel
neighbourhood. Ergo, a binary mask is constructed as follows
and is convolved with the output of the foreground detection
module:

Ωi =





1, if [di >= ξstdi]&[di/ḡi ≥ ε1],
1, if||(ri, gi, bi)− (r̄i, ḡi, b̄i)||2 ≥ ε2,
0, otherwise

(10)



Where di = abs(gi− ḡi) is the absolute deviation of intensity
from the average and r, g and b are chromaticity coordinates
calculated by r = R/(R+G+B), g = G/(R+G+B) and
b = B/(R+G+B). The parameters ξ, ε1 and ε2 are tuning
parameters.

Finally, the average and standard deviation of the resulting
background pixels are updated as follows:

ḡi = βgi + (1− β)ḡi (11)

stdi =
√
β(gi − ḡi)2 + (1− β)std2i (12)

Where β is a learning rate such that β ∈ [0, 1] The chromatic-
ity coordinates, r̄i, ḡi, b̄i, are updated in the same way as was
done for ḡi.

B. Background Modeling using a Shading Model and a Gaus-
sianity Test

The method proposed by Ng et al implements a hierarchical
framework that uses a combination of a pixel-based Shading
Model and a block-based Gaussianity Test [1]. This approach
is based on the assumption that camera noise is both spatially
Gaussian, and temporally uncorrelated. If the difference of two
consecutive frames are taken, only Gaussian noise and fore-
ground objects should remain. Under these assumptions, they
deduce that background pixels will be Gaussian distributed and
foreground pixels will be non-Gaussian distributed. Therefore
background pixels can be distinguished from foreground pixels
using a Gaussianity test.

The Gaussianity Test statistic is defined as follows:

H(J1, J2, J4) = J4 + 2J4
1 − 3J2

2 (13)

Where Jk is a moment defined by the following equation:

Ĵk(x, y) =
1

M2

M−1
2∑

m=−M−1
2

M−1
2∑

n=1−M−1
2

[Dt(x+m, y+n)]k (14)

The Gaussianity Test statistic is expected to be close to
zero when a set of samples is Gaussian distributed. If a set
of samples in a block of size MxM has a Gaussianity Test
statistic that is greater than a predefined threshold, τ , then the
block is considered to contain foreground pixels.

block =

{
foreground, if H > τ
background, otherwise (15)

However, this assumption does not perform well in the pres-
ence of sudden illumination changes. A shading model is
implemented to handle these.

Ng et al extend the Gaussianity test with a shading model
proposed by Skifstad [13] in order to make it robust to sudden
illumination changes. The shading model is necessary because
the previous assumption that background regions are Gaussian
distributed does not hold true in the presence of sudden
illumination changes.

The shading model assumes that a pixel intensity can
be decomposed into an illumination value and a shading
coefficient. It is also assumed that if there is no physical

change between two frames, such as a moving object, then
the ratio of pixel intensities will be constant and independent
of the shading coefficients of the frames:

R(x, y) =
I1(x, y)

I2(x, y)
=
Li,1

Li,2
(16)

Under this assumption, if no foreground objects exist in
a difference frame, the ratio of pixel intensities should re-
main constant and therefore be Gaussian distributed. Now, by
employing the shading model as an input to the Gaussianity
test module, the background model can be made robust to
sudden illumination changes. The equation used to generate
the moments used in the Gaussianity Test statistic is modified
to make use of the pixel intensity ratio:

Ĵk(x, y) =
1

M2

M−1
2∑

m=−M−1
2

M−1
2∑

n=1−M−1
2

[Rgt(x+m, y+n)]k (17)

Where

Rgt(x, y) =
BMt−1(x, y)

It(x, y)
(18)

The foreground mask is obtained using the following equa-
tions:

Dt(x, y) = |It(x, y)−BMt−1(x, y)| (19)

(x, y) ⊂
{

foreground, if Dt(x, y) > Ta
background, otherwise (20)

Where BMt(x, y) is the intensity value of the background
model at the coordinates (x, y) and time t, It(x, y) is the
intensity value of the current pixel at the coordinates (x, y)
and time t and Ta is an adaptive threshold. This equation is
only employed in the foreground blocks as classified by the
Gaussianity test.
Ta is an adaptive threshold which is calculated using an

automatic, iterative method first proposed by Ridler [14]. This
method is computationally inexpensive but has the disadvan-
tage of assuming that the scene is bimodal. This assumption
predicts that there will be two distinct brightness regions in the
image represented by two peaks in the grey-level histogram
of the input image. These regions correspond to the object
and its surroundings and so it is then reasonable to select the
threshold as the grey-level half-way between these two peaks.

The histogram of the current frame, It(x, y) is segmented
into two parts using a threshold, Titerate, which is first set to
the middle value (127) of the range of intensities. For each
iteration, the sample means of the foreground pixel intensities
and the sample means of the background pixel intensities are
calculated and a new threshold is determined as the average
of these two means. The iterations stop once the threshold
converges on a value, normally within about 4 iterations. The
following formula describes this process:

Tk+1 =

∑Tk

b=0 bn(b)

2
∑Tk

b=0 n(b)
+

∑N
b=Tk+1

bn(b)

2
∑N

b=Tk+1
n(b)

(21)



Where Tk is the threshold at the kth iteration, b is the intensity
value and n(b) is the number of occurrences of the value b in
the image such that 0 ≤ b ≤ N .

Once the foreground mask has been segmented, morpho-
logical filtering is performed on the foreground mask in order
to remove noise. Ng et al. perform one closing operation
followed by one opening operation.

The values of the background pixels are updated using the
following formula:

BMt(x, y) =





BMt−1(x, y), if Dt(x, y) ≥ Ta
It(x, y), if Dt(x, y) < Tf
αIt(x, y)+
(1− α)BMt−1(x, y), if Tf ≤ Dt(x, y) < Ta

(22)

Where Tf is fixed and smaller than Ta and α is a learning
rate such that ∈ [0, 1]

C. Background Modeling using Non-parametric Kernel Den-
sity Estimation

The solution proposed by Vemulapalli is an extension of
the popular kernel density estimation (KDE) technique first
proposed by Elgammal et al. [15]. They extend the background
model from the temporal to spatio-temporal domain by using
3x3 blocks centred at each pixel as 9-dimensional data points
instead of individual pixel intensity values [12]. In order to
overcome the obvious increase in computational complexity
that this would cause, a hyper-spherical kernel is used instead
of the typical Gaussian kernel. Each pass of the background
modeling module entails comparing the data points of the
current frame, F0(x, y) with those of the previous frames,
Fi...N (x, y) selected from a window of size N = 50. The
Euclidean distance is then employed to compare the data
points instead of the typical pixel subtraction as used by
Elgammal et al. Furthermore, two non-parametric background
models, long-term and short-term, in order to exploit their
respective advantages at eliminating false positive detections.

So, for each new frame a series of N−1 Euclidean distances
are calculated by comparing each current pixel’s data point to
its past data-point values. The higher the value of a Euclidean
distance, the higher the probability that the current pixel is
part of the foreground. These distances are then thresholded
to determine if they lie within the radius of the discrete
hyperspherical kernel. This radius is a function of the amount
of variation present in the background.

M =
N∑

i=1

φ

( ||F0(x, y)− Fi(x, y)||
r

)
(23)

Where r is the radius of the hyper-sphere and

φ(u) =

{
1, if u ≤ 1,
0, otherwise (24)

||F0(x, y) − Fi(x, y)|| is the Euclidean distance between the
data points F0(x, y) and Fi(x, y).

The N − 1 binary outputs of this module are then summed
to produce a type of confidence measure, M of whether the
current pixel belongs to the background. This sum is then
thresholded using a value, T :

M

N
≤ T (25)

The long-term and short-term models are updated using a
blind update and selective update mechanism respectively. The
blind update adds a new 9-dimensional data point, Fi(x, y),
to the sample set regardless of whether it belongs to the
background or foreground while the selective update adds the
data-point only if it belongs to the background. When a new
data point is added the oldest data point is removed from the
sample set. The output of both the long-term and short-term
models are used as inputs to the foreground detection module.
The output of the module is described by the following table:

Long-term model Short-term model Output
Ol(x, y) = 0 Os(x, y) = 0 Ofd(x, y) = 0
Ol(x, y) = 0 Os(x, y) = 1 Ofd(x, y) = O′

fd(x, y)

Ol(x, y) = 1 Os(x, y) = 0 Ofd(x, y) = 0
Ol(x, y) = 1 Os(x, y) = 1 Ofd(x, y) = 1

TABLE I: The output of the foreground detection module
which combines the output of the short-term and long-term
background models.

Where Ol(x, y) = 1 is the output of the long-term model,
Os(x, y) = 1 is the output of the short-term model and
Ofd(x, y) = 1 is the output of the foreground detection
module where:

O′fd(x, y) =





1, if
∑1

i=−1
∑1

j=−1
Os(x− i, y − j)Ol(x− i, y − j)
6= 0,

0, otherwise

(26)

If the two models agree on an output, the resultant fore-
ground mask will obviously have the same output. If only
the long-term model predicts foreground, the foreground mask
will prefer the prediction of the short-term model. In the event
of the short-term model predicting foreground and the long-
term model predicting a background, a check is performed
to see if the two models agree on the output of any of the
neighbouring pixels being foreground. If this is the case, the
pixel is classified as a foreground.

In the event of a sudden illumination change most of the
frame will be classified as foreground and will remain so unitl
the long term model adapts to the new lighting conditions.
Vemulapalli checks whether more than a certain percentage α
of the frame is declared as foreground. If this is the case the
short-term model is updated using the blind update mechanism
so that it avoids false detections and adapts to the new lighting
conditions quickly.

IV. EXPERIMENTAL METHODOLOGY

A. Dataset
These techniques will be tested with respect to the accuracy

of their outputs. In order to accomplish this three sequences



from the publicly available Wallflower dataset [6] are used.
The first sequence is named ”Waving Trees” and contains a

scene with a typical dynamic background. It has 286 frames
where a ground truth is provided for the 247th frame. The
second sequence is named ”Time of Day” and contains a
scene with gradual illumination changes. It has 5889 frames
where a ground truth is provided for the 1850th frame. The
third sequence is named ”Light Switch” and contains a scene
with sudden illumination changes. It has 2714 frames where
a ground truth is provided for the 1865th frame.

B. Metrics

For the evaluation of the output accuracy we make use of
the detection rate (DR), false alarm rate (FAR) and precision
(P) statistics. The formulae for these are provided below:

DR =
#true positives

#true positives+ #false negatives
(27)

FAR =
#false positives

#false positives+ #true negatives
(28)

P =
#true positives

#true positives+ #false positives
(29)

Where #true positives is the number of correctly classi-
fied foreground pixels, #true negatives is the number of
correctly classified background pixels, #false positives is
the number of incorrectly classified foreground pixels and
#true negatives is the number of incorrectly classified back-
ground pixels.

C. Selection of Tuning Parameters

Zhou et al. set Rregion = 9, R = 2, N = 4, K = 4,
TP = 0.65, TB = 0.7, αb = αw = β = 0.01, αp = 0.9,
ξ = 2.5 and ε1 = ε2 = 0.2. Zhou et al do not specify
which similarity measure they used; we investigated two, the
L1 Norm and the Square L2 Norm. The latter was determined
to be best by qualitatively comparing their output. Zhou et
al. also did not specify how they initialized the weights of
the model histograms; we investigated two methods: using
a values that decrease linearly and values that decrease ex-
ponentially. The latter was determined to be the best by
qualitative analysis. Using the exponential curve w0 = 0.567,
w1 = 0.321, w2 = 0.103, w3 = 0.011.

Ng et al. set M = 17 and α = 0.1. The value for τ is set
empirically for the dataset at hand. For the experiments they
perform on the PETS 2006 dataset they set τ = 1× 105. We
set τ = 1× 103.

Vemulapalli sets W = 250, N = 50 and α = 75%.
However, for the the Waving Trees sequence we set W = 200
and N = 20 since the 247th frame is used for the ground truth.
Vemulapalli does not specify which parameters they used for
the hypersphere radius, r, and the threshold, T . We set r = 1
and T = µ + kσ where µ is the mean and σ is the standard
deviation of the values obtained for M in a frame. k is a
positive integer which is set to 6.

V. EXPERIMENTAL RESULTS

A. Waving Trees
From these results shown in fig. 1 we can see that the Zhou

et al. provides the best detection rate, moderate precision and
worst false alarm rate. Ng et al. provides the lowest false alarm
rate, but the worst precision and detection rate. Vemulapalli
provides the best precision and moderate detection and false
alarm rates.

B. Time of Day
From these results shown in fig. 2 we can see that Zhou

has the worst performance; having the worst detection rate,
precision and false alarm rate. Ng et al. has a superior
precision and false alarm rate as well as a moderate detection
rate. Vemulapalli provides the best detection rate and values
only slightly worse than Ng et al. in regard to precision and
false alarm rate.

C. Light Switch
From these results shown in fig. 3 we can see that Zhou et

al. provides the best detection rate, moderate precision and a
moderate false alarm rate. Ng et al. has the best precision and
false alarm rate, but the worst detection rate. Vemulapalli has
a moderate detection rate, but the worst precision and false
alarm rate.

The poor performance of the solution proposed by Vemu-
lapalli is largely due to the fact that the sudden illumination
check is not triggered by the video sequence. Hence, the blind
update mechanism for the short-term model is not employed
and the model does not adapt to the new lighting conditions
quickly enough.

Fig. 1: Results of ”Waving Trees” sequence.

Fig. 2: Results of ”Time of Day” sequence.



Fig. 3: Results of ”Light Switch” sequence.

Fig. 4: Foreground segmentation masks of proposed solutions.
The columns correspond to the ”Waving Trees”, ”Time of
Day” and ”Light Switch” sequences respectively. The first
row represents the ground truths while the remaining rows
correspond to the outputs of the solutions proposed by Zhou
et al., Ng et al. and Vemulapalli respectively.

VI. CONCLUSION

This paper investigates three background modelling tech-
niques that are robust against sudden and gradual illumination
changes for a single, stationary camera. The first makes
use of a modified local binary pattern that considers both
spatial texture and colour information. The second uses a
combination of a frame-based Gaussianity Test and a pixel-
based Shading Model to handle sudden illumination changes.
The third solution is an extension of a popular kernel density
estimation (KDE) technique from the temporal to spatio-
temporal domain using 9-dimensional data points instead of
pixel intensity values and a discrete hyperspherical kernel
instead of a Gaussian kernel.

A number of experiments were then performed which
provide a comparison of these techniques in regard to clas-
sification accuracy.

The SCBP histogram feature approach performs well for
simple dynamic backgrounds, but not for scenes that contain
any type of illumination changes.

The Shading Model and Gaussianity Test approach provides

a sparse foreground mask that is very accurate for all three
sequences, but has a poor detection rate.

The KDE approach performs well for simple dynamic
backgrounds and scenes that contain gradual illumination
changes. However, the mechanism employed to handle sudden
illumination changes does not work well due to the use of an
unreliable criterion for sudden illumination detection.

VII. FUTURE WORK

We plan to further investigate the solution proposed by Ng
et al. and Vemulapalli. Both have potential to be improved
through automatic parameter selection and possibly by in-
tegrating the strengths of all three the solutions that were
investigated.
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