44 research outputs found

    3D printed measurement phantoms for evaluation of magnetic particle imaging scanner

    Get PDF
    To assess the potential and capability of different MPI scanner designs and architectures, defined reference phantoms for imaging studies are required. For the preparation of well-defined structures as well as realistic vessel structures, 3D printed molds were filled with magnetic nanoparticles embedded into a long term stable polymeric matrix or perfused with a flowing ferrofluid. Different types and layouts of 3D printed phantoms will be presented which were imaged by means of MPI successfully

    In situ theranostic platform uniting highly localized magnetic fluid hyperthermia, magnetic particle imaging, and thermometry in 3D

    Full text link
    In all of medical profession a broad field of research is dedicated to seek less invasive and low-risk forms of therapy with the ultimate goal of non-invasive therapy, particularly in neoplasmic diseases. Theranostic platforms, combining diagnostic and therapeutic approaches within one system, have thus garnered interest to augment invasive surgical, chemical, and ionizing interventions. Magnetic particle imaging (MPI) offers, with its versatile tracer material (superparamagnetic iron oxide nanoparticles, SPIOs), a quite recent alternative to established radiation based diagnostic modalities. In addition, MPI lends a bimodal theranostic frame allowing to combine tomographic imaging with therapy techniques using the very same SPIOs. In this work, we show for the first time the interleaved combination of MPI-based imaging, therapy (highly localized magnetic fluid hyperthermia) and therapy safety control (MPI-based thermometry) within one theranostic platform in all three spatial dimensions

    Nanoflowers Versus Magnetosomes: Comparison Between Two Promising Candidates for Magnetic Hyperthermia Therapy

    Get PDF
    Magnetic Fluid Hyperthermia mediated by iron oxide nanoparticles is one of the most promising therapies for cancer treatment. Among the different candidates, magnetite and maghemite nanoparticles have revealed to be some of the most promising candidates due to both their performance and their biocompatibility. Nonetheless, up to date, the literature comparing the heating ef ciency of magnetite and maghemite nanoparticles of similar size is scarce. To ll this gap, here we provide a comparison between commercial Synomag Nano owers (pure maghemite) and bacterial magnetosomes (pure magnetite) synthesized by the magnetotactic bacterium Magnetospirillum gryphiswaldense of hDi 40 45 nm. Both types of nanoparticles exhibit a high degree of crystallinity and an excellent degree of chemical purity and stability. The structural and magnetic properties in both nanoparticle ensembles have been studied by means of X Ray Diffraction, Transmission Electron Microscopy, X Ray Absorption Spectroscopy, and SQUID magnetometry. The heating ef ciency has been analyzed in both systems using AC magnetometry at several eld amplitudes (0 88 mT) and frequencies (130, 300, and 530 kHz).This work was supported in part by the Spanish "Ministerio de Ciencia, Investigación y Universidades'' under Project MAT2017-83631-C3-R, and in part by the Nanotechnology in Translational Hyperthermia (HIPERNANO) under Grant RED2018-102626-T. The work of Elizabeth M. Jefremovas was supported by the Beca Concepción Arenal through the Gobierno de Cantabria-Universidad de Cantabria under Grant BDNS: 406333. The work of Irati Rodrigo was supported by the Programa de Perfeccionamiento de Personal Investigador Doctor (Gobierno Vasco) under Grant POS-2020-1-0028 and Grant IT-1005-16. The work of Lourdes Marcano was supported by the Postdoctoral Fellowship from the Basque Government under Grant POS-2019-2-0017

    Colloidal Flower-Shaped Iron Oxide Nanoparticles: Synthesis Strategies and Coatings

    Get PDF
    The assembly of magnetic cores into regular structures may notably influence the properties displayed by a magnetic colloid. Here, key synthesis parameters driving the self-assembly process capable of organizing colloidal magnetic cores into highly regular and reproducible multi-core nanoparticles are determined. In addition, a self-consistent picture that explains the collective magnetic properties exhibited by these complex assemblies is achieved through structural, colloidal, and magnetic means. For this purpose, different strategies to obtain flower-shaped iron oxide assemblies in the size range 25-100 nm are examined. The routes are based on the partial oxidation of Fe(OH)(2), polyol-mediated synthesis or the reduction of iron acetylacetonate. The nanoparticles are functionalized either with dextran, citric acid, or alternatively embedded in polystyrene and their long-term stability is assessed. The core size is measured, calculated, and modeled using both structural and magnetic means, while the Debye model and multi-core extended model are used to study interparticle interactions. This is the first step toward standardized protocols of synthesis and characterization of flower-shaped nanoparticles

    Remote Sensing of the Nano-Rheological Properties of Soft Materials Using Magnetic Nanoparticles and Magnetic AC Susceptometry

    No full text
    We have developed a nano-rheological characterization tool to extract the frequency- and scale-dependent rheological properties of soft materials during oral processing. Taking advantage of AC susceptometry, the dynamic magnetization of magnetic nanoparticles blended in the matrix material is measured. The magnetic AC susceptibility spectra of the particles are affected by the viscosity and mechanical modulus of the matrix material and provide the rheological properties of the matrix. Commercially available iron-oxide magnetic nanoparticles with 80 and 100 nm particle sizes are used as tracers in the frequency range of 1 Hz–10 kHz. The AC susceptibility is measured using two differentially connected coils, and the effects of the sample temperature and distance with respect to the detection coils are investigated. The developed measurement setup shows the feasibility of remote nano-rheological measurements up to 2 cm from the coil system, which can be used to, e.g., monitor the texture of matrix materials during oral processing

    Evaluation of spatio-temporal resolution of MPI scanners with a dynamic bolus phantom

    Get PDF
    Magnetic particle imaging (MPI) is a tomographic imaging method to determine the spatial distribution of magnetic nanoparticles (MNP) within a defined volume. To evaluate the spatio-temporal resolution of existing MPI scanners, we developed dynamic MPI measurement phantoms. These segmented flow phantoms consist of a bolus of ferrofluid tracer material, pumped through a tube system. Using a hydrophobic organic carrier oil, cylindrically shaped bolus of different diameter, length, MNP concentrations, and flow velocity can be emulated. Moving boluses were imaged by MPI and the correlation of spatial resolution und velocity of the bolus was investigated. For all bolus dimension and flow velocity combinations, a decreasing spatial resolution and increasing blurring with increasing bolus velocity and decreasing bolus volume was observed

    Effect of coating thickness of iron oxide nanoparticles on their relaxivity in the MRI

    No full text
    Objective(s):Iron oxide nanoparticles have found prevalent applications in various fields including drug delivery, cell separation and as contrast agents. Super paramagnetic iron oxide (SPIO) nanoparticles allow researchers and clinicians to enhance the tissue contrast of an area of interest by increasing the relaxation rate of water. In this study, we evaluate the dependency of hydrodynamic size of iron oxide nanoparticles coated with Polyethylene  glycol (PEG) on their relativities with 3 Tesla clinical MRI. Materials and Methods: We used three groups of nanoparticles with nominal sizes 20, 50 and 100 nm with a core size of 8.86 nm, 8.69 nm and 10.4 nm that they were covered with PEG 300 and 600 Da. A clinical magnetic resonance scanner determines the T1 and T2 relaxation times for various concentrations of PEG-coated nanoparticles. Results: The size measurement by photon correlation spectroscopy showed the hydrodynamic sizes of MNPs with nominal 20, 50 and 100 nm with 70, 82 and 116 nm for particles with PEG 600 coating and 74, 93 and 100 nm for  particles with PEG 300 coating, respectively. We foud that the relaxivity decreased with increasing overall particle size (via coating thickness). Magnetic resonance imaging showed that by increasing the size of the nanoparticles, r2/r1 increases linearly. Conclusion: According to the data obtained from this study it can be concluded that increments in coating thickness have more influence on relaxivities compared to the changes in core size of magnetic nanoparticles

    Synomag®: The new high-performance tracer for magnetic particle imaging

    No full text
    The success of tracer-based tomographic methods, such as Magnetic Particle Imaging (MPI), depends on two factors primarily: scanner hardware and tracer performance. Within the last years, several hardware improvements have been presented improving temporal and spatial resolution of MPI systems. However, there was still a lack of efficient commercially available tracers for MPI. Here we report on synomag® particles as a new tracer tailored for MPI, which shows almost four-times higher signal in a Traveling Wave MPI scanner than the established tracer Resovist®.   Int. J. Mag. Part. Imag. 7(1), 2021, Article ID: 2103003, DOI: 10.18416/IJMPI.2021.210300
    corecore