31 research outputs found

    p.Ala541Thr variant of MEN1 gene: A non deleterious polymorphism or a pathogenic mutation?

    Get PDF
    Context Multiple Endocrine Neoplasia Type 1 (MEN1) is an autosomal dominant inherited syndrome, related to mutations in the MEN1 gene. Controversial data suggest that the nonsynonymous p.Ala541Thr variant, usually considered as a non-pathogenic polymorphism, may be associated with an increased risk of MEN1-related lesions in carriers. Objective The aim of this study was to evaluate the pathogenic influence of the p.Ala541Thr variant on clinical and functional outcomes. Patients and methods We analysed a series of 55 index patients carrying the p.Ala541Thr variant. Their clinical profile was compared to that of 117 MEN1 patients. The biological impact of the p.Ala541Thr variant on cell growth was additionally investigated on menin-deficient Leydig cell tumour (LCT)10 cells generated from Men1+/Men1− heterozygous knock-out mice, and compared with wild type (WT). Results The mean age at first appearance of endocrine lesions was similar in both p.Ala541Thr carriers and MEN1 patients, but no p.Ala541Thr patient had more than one cardinal MEN1 lesion at initial diagnosis. A second MEN1 lesion was diagnosed in 13% of MEN1 patients and in 7% of p.Ala541Thr carriers in the year following preliminary diagnosis. Functional studies on LCT10 cells showed that overexpression of the p.Ala541Thr variant did not inhibit cell growth, which is in direct contrast to results obtained from investigation of WT menin protein. Conclusion Taken together, these data raise the question of a potential pathogenicity of the p.Ala541Thr missense variant of menin that commonly occurs within the general population. Additional studies are required to investigate whether it may be involved in a low-penetrance MEN1 phenotype

    Gammaherpesvirus-Driven Plasma Cell Differentiation Regulates Virus Reactivation from Latently Infected B Lymphocytes

    Get PDF
    Gammaherpesviruses chronically infect their host and are tightly associated with the development of lymphoproliferative diseases and lymphomas, as well as several other types of cancer. Mechanisms involved in maintaining chronic gammaherpesvirus infections are poorly understood and, in particular, little is known about the mechanisms involved in controlling gammaherpesvirus reactivation from latently infected B cells in vivo. Recent evidence has linked plasma cell differentiation with reactivation of the human gammaherpesviruses EBV and KSHV through induction of the immediate-early viral transcriptional activators by the plasma cell-specific transcription factor XBP-1s. We now extend those findings to document a role for a gammaherpesvirus gene product in regulating plasma cell differentiation and thus virus reactivation. We have previously shown that the murine gammaherpesvirus 68 (MHV68) gene product M2 is dispensable for virus replication in permissive cells, but plays a critical role in virus reactivation from latently infected B cells. Here we show that in mice infected with wild type MHV68, virus infected plasma cells (ca. 8% of virus infected splenocytes at the peak of viral latency) account for the majority of reactivation observed upon explant of splenocytes. In contrast, there is an absence of virus infected plasma cells at the peak of latency in mice infected with a M2 null MHV68. Furthermore, we show that the M2 protein can drive plasma cell differentiation in a B lymphoma cell line in the absence of any other MHV68 gene products. Thus, the role of M2 in MHV68 reactivation can be attributed to its ability to manipulate plasma cell differentiation, providing a novel viral strategy to regulate gammaherpesvirus reactivation from latently infected B cells. We postulate that M2 represents a new class of herpesvirus gene products (reactivation conditioners) that do not directly participate in virus replication, but rather facilitate virus reactivation by manipulating the cellular milieu to provide a reactivation competent environment

    Early Events Associated with Infection of Epstein-Barr Virus Infection of Primary B-Cells

    Get PDF
    Epstein Barr virus (EBV) is closely associated with the development of a vast number of human cancers. To develop a system for monitoring early cellular and viral events associated with EBV infection a self-recombining BAC containing 172-kb of the Epstein Barr virus genome BAC-EBV designated as MD1 BAC (Chen et al., 2005, J.Virology) was used to introduce an expression cassette of green fluorescent protein (GFP) by homologous recombination, and the resultant BAC clone, BAC-GFP-EBV was transfected into the HEK 293T epithelial cell line. The resulting recombinant GFP EBV was induced to produce progeny virus by chemical inducer from the stable HEK 293T BAC GFP EBV cell line and the virus was used to immortalize human primary B-cell as monitored by green fluorescence and outgrowth of the primary B cells. The infection, B-cell activation and cell proliferation due to GFP EBV was monitored by the expression of the B-cell surface antigens CD5, CD10, CD19, CD23, CD39, CD40 , CD44 and the intercellular proliferation marker Ki-67 using Flow cytometry. The results show a dramatic increase in Ki-67 which continues to increase by 6–7 days post-infection. Likewise, CD40 signals showed a gradual increase, whereas CD23 signals were increased by 6–12 hours, maximally by 3 days and then decreased. Monitoring the viral gene expression pattern showed an early burst of lytic gene expression. This up-regulation of lytic gene expression prior to latent genes during early infection strongly suggests that EBV infects primary B-cell with an initial burst of lytic gene expression and the resulting progeny virus is competent for infecting new primary B-cells. This process may be critical for establishment of latency prior to cellular transformation. The newly infected primary B-cells can be further analyzed for investigating B cell activation due to EBV infection

    Molecular mechanisms of incretin hormone secretion

    Get PDF
    Incretin peptides (glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP)) are secreted from enteroendocrine cells in the intestinal epithelium, and help to coordinate metabolic responses to food ingestion. A number of molecular mechanisms have recently been defined that underlie carbohydrate, lipid and protein sensing in gut endocrine cells. Knockout mice lacking sodium glucose tranporter-1 (SGLT-1) or the short chain fatty acid sensing receptor FFAR2 (GPR43), for example, have highlighted the importance of these molecules in incretin secretion. This review outlines our current understanding of sensory pathways in incretin secreting cells and highlights the therapeutic potential of targeting them for the development of novel therapies for obesity and diabetes

    Specific Humoral Immunity versus Polyclonal B Cell Activation in Trypanosoma cruzi Infection of Susceptible and Resistant Mice

    Get PDF
    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects 10–12 million people in Latin America. Patent parasitemia develops during acute disease. During this phase, polyclonal B cell activation has been reported to generate high levels of serum antibody with low parasite specificity, and delayed protective humoral immunity, which is necessary to prevent the host from succumbing to infection. In this manuscript, data show that relatively resistant mice have improved parasite-specific humoral immunity and decreased polyclonal B cell activation compared to susceptible mice. Parasite-specific humoral immunity was associated with differential expansion of B cell subsets and T cells in the spleen, as well as with increased Th1 and decreased Th2 cytokine production. These data suggest that host susceptibility/genetic biases impact the development of humoral responses to infection. Th2 cytokines are generally associated with improved antibody responses. In the context of T. cruzi infection of susceptible mice, Th2 cytokines were associated with increased total antibody production concomitant with delayed pathogen-specific humoral immunity. This study highlights the need to consider the effect of host biases when investigating humoral immunity to any pathogen that has reported polyclonal B cell activation during infection

    Opposite effects of sodium butyrate on CCKmRNA and CCK peptide levels in RIN cells

    No full text
    International audienc

    Opposite effects of sodium butyrate on CCKmRNA and CCK peptide levels in RIN cells

    No full text
    International audienc
    corecore