2,530 research outputs found

    Detection of Bursts from FRB 121102 with the Effelsberg 100-m Radio Telescope at 5 GHz and the Role of Scintillation

    Get PDF
    FRB 121102, the only repeating fast radio burst (FRB) known to date, was discovered at 1.4 GHz and shortly after the discovery of its repeating nature, detected up to 2.4 GHz. Here we present three bursts detected with the 100-m Effelsberg radio telescope at 4.85 GHz. All three bursts exhibited frequency structure on broad and narrow frequency scales. Using an autocorrelation function analysis, we measured a characteristic bandwidth of the small-scale structure of 6.4±\pm1.6 MHz, which is consistent with the diffractive scintillation bandwidth for this line of sight through the Galactic interstellar medium (ISM) predicted by the NE2001 model. These were the only detections in a campaign totaling 22 hours in 10 observing epochs spanning five months. The observed burst detection rate within this observation was inconsistent with a Poisson process with a constant average occurrence rate; three bursts arrived in the final 0.3 hr of a 2 hr observation on 2016 August 20. We therefore observed a change in the rate of detectable bursts during this observation, and we argue that boosting by diffractive interstellar scintillations may have played a role in the detectability. Understanding whether changes in the detection rate of bursts from FRB 121102 observed at other radio frequencies and epochs are also a product of propagation effects, such as scintillation boosting by the Galactic ISM or plasma lensing in the host galaxy, or an intrinsic property of the burst emission will require further observations.Comment: Accepted to ApJ. Minor typos correcte

    A sample of low energy bursts from FRB 121102

    Get PDF
    We present 41 bursts from the first repeating fast radio burst discovered (FRB 121102). A deep search has allowed us to probe unprecedentedly low burst energies during two consecutive observations (separated by one day) using the Arecibo telescope at 1.4 GHz. The bursts are generally detected in less than a third of the 580-MHz observing bandwidth, demonstrating that narrow-band FRB signals may be more common than previously thought. We show that the bursts are likely faint versions of previously reported multi-component bursts. There is a striking lack of bursts detected below 1.35 GHz and simultaneous VLA observations at 3 GHz did not detect any of the 41 bursts, but did detect one that was not seen with Arecibo, suggesting preferred radio emission frequencies that vary with epoch. A power law approximation of the cumulative distribution of burst energies yields an index 1.8±0.3-1.8\pm0.3 that is much steeper than the previously reported value of 0.7\sim-0.7. The discrepancy may be evidence for a more complex energy distribution. We place constraints on the possibility that the associated persistent radio source is generated by the emission of many faint bursts (700\sim700 ms1^{-1}). We do not see a connection between burst fluence and wait time. The distribution of wait times follows a log-normal distribution centered around 200\sim200 s; however, some bursts have wait times below 1 s and as short as 26 ms, which is consistent with previous reports of a bimodal distribution. We caution against exclusively integrating over the full observing band during FRB searches, because this can lower signal-to-noise.Comment: Accepted version. 16 pages, 7 figures, 1 tabl

    Microarcsecond VLBI pulsar astrometry with PSRPI I. Two binary millisecond pulsars with white dwarf companions

    Full text link
    Model-independent distance constraints to binary millisecond pulsars (MSPs) are of great value to both the timing observations of the radio pulsars, and multiwavelength observations of their companion stars. Very Long Baseline Interferometry (VLBI) astrometry can be employed to provide these model-independent distances with very high precision via the detection of annual geometric parallax. Using the Very Long Baseline Array, we have observed two binary millisecond pulsars, PSR J1022+1001 and J2145-0750, over a two-year period and measured their distances to be 700 +14 -10 pc and 613 +16 -14 pc respectively. We use the well-calibrated distance in conjunction with revised analysis of optical photometry to tightly constrain the nature of their massive (M ~ 0.85 Msun) white dwarf companions. Finally, we show that several measurements of their parallax and proper motion of PSR J1022+1001 and PSR J2145-0750 obtained by pulsar timing array projects are incorrect, differing from the more precise VLBI values by up to 5 sigma. We investigate possible causes for the discrepancy, and find that imperfect modeling of the solar wind is a likely candidate for the timing model errors given the low ecliptic latitude of these two pulsars.Comment: 14 pages, 9 figures, 6 tables; minor revisions in response to referee comments to match version accepted by Ap

    Quantum ergodicity of C* dynamical systems

    Full text link
    This paper contains a very simple and general proof that eigenfunctions of quantizations of classically ergodic systems become uniformly distributed in phase space. This ergodicity property of eigenfunctions f is shown to follow from a convexity inequality for the invariant states (Af,f). This proof of ergodicity of eigenfunctions simplifies previous proofs (due to A.I. Shnirelman, Colin de Verdiere and the author) and extends the result to the much more general framework of C* dynamical systems.Comment: Only very minor differences with the published versio

    Bigger is not always better : viability selection on body mass varies across life stages in a hibernating mammal

    Get PDF
    ACKNOWLEDGEMENTS: We would like to express our thanks to all the hard-working marmoteers, across the course of the study, that helped to collect the annual field data. In addition, we would like to specifically thank Kenneth B. Armitage for starting the project and access to the long-term body mass data. This work 431 was supported by an EASTBIO PhD studentship from the Biotechnology and Biological Sciences Research Council (BBSRC) and the University of Aberdeen, which was awarded to A.H.M.J. D.T.B was supported by the National Geographic Society, UCLA (Faculty Senate and the Division of Life Sciences), a Rocky Mountain Biological Laboratory research fellowship, and NSF-IDBR-0754247, DEB435 1119660 and 1557130 (to DTB); and NSF-DBI 0242960, 0731346, and 1262713 (to the RMBL).Peer reviewedPublisher PD
    corecore