765 research outputs found

    Finite-Temperature Fidelity-Metric Approach to the Lipkin-Meshkov-Glick Model

    Full text link
    The fidelity metric has recently been proposed as a useful and elegant approach to identify and characterize both quantum and classical phase transitions. We study this metric on the manifold of thermal states for the Lipkin-Meshkov-Glick (LMG) model. For the isotropic LMG model, we find that the metric reduces to a Fisher-Rao metric, reflecting an underlying classical probability distribution. Furthermore, this metric can be expressed in terms of derivatives of the free energy, indicating a relation to Ruppeiner geometry. This allows us to obtain exact expressions for the (suitably rescaled) metric in the thermodynamic limit. The phase transition of the isotropic LMG model is signalled by a degeneracy of this (improper) metric in the paramagnetic phase. Due to the integrability of the isotropic LMG model, ground state level crossings occur, leading to an ill-defined fidelity metric at zero temperature.Comment: 18 pages, 3 figure

    Coalition Resilient Outcomes in Max k-Cut Games

    Full text link
    We investigate strong Nash equilibria in the \emph{max kk-cut game}, where we are given an undirected edge-weighted graph together with a set {1,…,k}\{1,\ldots, k\} of kk colors. Nodes represent players and edges capture their mutual interests. The strategy set of each player vv consists of the kk colors. When players select a color they induce a kk-coloring or simply a coloring. Given a coloring, the \emph{utility} (or \emph{payoff}) of a player uu is the sum of the weights of the edges {u,v}\{u,v\} incident to uu, such that the color chosen by uu is different from the one chosen by vv. Such games form some of the basic payoff structures in game theory, model lots of real-world scenarios with selfish agents and extend or are related to several fundamental classes of games. Very little is known about the existence of strong equilibria in max kk-cut games. In this paper we make some steps forward in the comprehension of it. We first show that improving deviations performed by minimal coalitions can cycle, and thus answering negatively the open problem proposed in \cite{DBLP:conf/tamc/GourvesM10}. Next, we turn our attention to unweighted graphs. We first show that any optimal coloring is a 5-SE in this case. Then, we introduce xx-local strong equilibria, namely colorings that are resilient to deviations by coalitions such that the maximum distance between every pair of nodes in the coalition is at most xx. We prove that 11-local strong equilibria always exist. Finally, we show the existence of strong Nash equilibria in several interesting specific scenarios.Comment: A preliminary version of this paper will appear in the proceedings of the 45th International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM'19

    A De Novo Mutation in COL1A1 in a Holstein Calf with Osteogenesis Imperfecta Type II

    Get PDF
    Osteogenesis imperfecta (OI) type II is a genetic connective tissue disorder characterized by bone fragility, severe skeletal deformities and shortened limbs. OI usually causes perinatal death of affected individuals. OI type II diagnosis in humans is established by the identification of heterozygous mutations in genes coding for collagens. The purpose of this study was to characterize the pathological phenotype of an OI type II-affected neonatal Holstein calf and to identify the causative genetic variant by whole-genome sequencing (WGS). The calf had acute as well as intrauterine fractures, abnormally shaped long bones and localized arthrogryposis. Genetic analysis revealed a private heterozygous missense variant in COL1A1 (c.3917T>A) located in the fibrillar collagen NC1 domain (p.Val1306Glu) that most likely occurred de novo. This confirmed the diagnosis of OI type II and represents the first report of a pathogenic variant in the fibrillar collagen NC domain of COL1A1 associated to OI type II in domestic animals. Furthermore, this study highlights the utility of WGS-based precise diagnostics for understanding congenital disorders in cattle and the need for continued surveillance for rare lethal genetic disorders in cattle

    Bogoliubov Excitations of Disordered Bose-Einstein Condensates

    Full text link
    We describe repulsively interacting Bose-Einstein condensates in spatially correlated disorder potentials of arbitrary dimension. The first effect of disorder is to deform the mean-field condensate. Secondly, the quantum excitation spectrum and condensate population are affected. By a saddle-point expansion of the many-body Hamiltonian around the deformed mean-field ground state, we derive the fundamental quadratic Hamiltonian of quantum fluctuations. Importantly, a basis is used such that excitations are orthogonal to the deformed condensate. Via Bogoliubov-Nambu perturbation theory, we compute the effective excitation dispersion, including mean free paths and localization lengths. Corrections to the speed of sound and average density of states are calculated, due to correlated disorder in arbitrary dimensions, extending to the case of weak lattice potentials.Comment: 23 pages, 11 figure

    Emerging and Adjunctive Therapies for Spinal Cord Injury Following Acute Canine Intervertebral Disc Herniation

    Get PDF
    Some dogs do not make a full recovery following medical or surgical management of acute canine intervertebral disc herniation (IVDH), highlighting the limits of currently available treatment options. The multitude of difficulties in treating severe spinal cord injury are well-recognized, and they have spurred intense laboratory research, resulting in a broad range of strategies that might have value in treating spinal cord-injured dogs. These include interventions that aim to directly repair the spinal cord lesion, promote axonal sparing or regeneration, mitigate secondary injury through neuroprotective mechanisms, or facilitate functional compensation. Despite initial promise in experimental models, many of these techniques have failed or shown mild efficacy in clinical trials in humans and dogs, although high quality evidence is lacking for many of these interventions. However, the continued introduction of new options to the veterinary clinic remains important for expanding our understanding of the mechanisms of injury and repair and for development of novel and combined strategies for severely affected dogs. This review outlines adjunctive or emerging therapies that have been proposed as treatment options for dogs with acute IVDH, including discussion of local or lesion-based approaches as well as systemically applied treatments in both acute and subacute-to-chronic settings. These interventions include low-level laser therapy, electromagnetic fields or oscillating electrical fields, adjunctive surgical techniques (myelotomy or durotomy), systemically or locally-applied hypothermia, neuroprotective chemicals, physical rehabilitation, hyperbaric oxygen therapy, electroacupuncture, electrical stimulation of the spinal cord or specific peripheral nerves, nerve grafting strategies, 4-aminopyridine, chondroitinase ABC, and cell transplantation

    Diagnostic Imaging in Intervertebral Disc Disease

    Get PDF
    Imaging is integral in the diagnosis of canine intervertebral disc disease (IVDD) and in differentiating subtypes of intervertebral disc herniation (IVDH). These include intervertebral disc extrusion (IVDE), intervertebral disc protrusion (IVDP) and more recently recognized forms such as acute non-compressive nucleus pulposus extrusion (ANNPE), hydrated nucleus pulposus extrusion (HNPE), and intradural/intramedullary intervertebral disc extrusion (IIVDE). Many imaging techniques have been described in dogs with roles for survey radiographs, myelography, computed tomography (CT), and magnetic resonance imaging (MRI). Given how common IVDH is in dogs, a thorough understanding of the indications and limitations for each imaging modality to aid in diagnosis, treatment planning and prognosis is essential to successful case management. While radiographs can provide useful information, especially for identifying intervertebral disc degeneration or calcification, there are notable limitations. Myelography addresses some of the constraints of survey radiographs but has largely been supplanted by cross-sectional imaging. Computed tomography with or without myelography and MRI is currently utilized most widely and have become the focus of most contemporary studies on this subject. Novel advanced imaging applications are being explored in dogs but are not yet routinely performed in clinical patients. The following review will provide a comprehensive overview on common imaging modalities reported to aid in the diagnosis of IVDH including IVDE, IVDP, ANNPE, HNPE, and IIVDE. The review focuses primarily on canine IVDH due to its frequency and vast literature as opposed to feline IVDH

    Vegetation structure derived from airborne laser scanning to assess species distribution and habitat suitability: The way forward

    Get PDF
    Ecosystem structure, especially vertical vegetation structure, is one of the six essential biodiversity variable classes and is an important aspect of habitat heterogeneity, affecting species distributions and diversity by providing shelter, foraging, and nesting sites. Point clouds from airborne laser scanning (ALS) can be used to derive such detailed information on vegetation structure. However, public agencies usually only provide digital elevation models, which do not provide information on vertical vegetation structure. Calculating vertical structure variables from ALS point clouds requires extensive data processing and remote sensing skills that most ecologists do not have. However, such information on vegetation structure is extremely valuable for many analyses of habitat use and species distribution. We here propose 10 variables that should be easily accessible to researchers and stakeholders through national data portals. In addition, we argue for a consistent selection of variables and their systematic testing, which would allow for continuous improvement of such a list to keep it up-to-date with the latest evidence. This initiative is particularly needed not only to advance ecological and biodiversity research by providing valuable open datasets but also to guide potential users in the face of increasing availability of global vegetation structure products

    Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography

    Get PDF
    The authors, demonstrated that 4.5-nm-half-pitch structures could be achieved using electron-beam lithography, followed by salty development. They also hypothesized a development mechanism for hydrogen silsesquioxane, wherein screening of the resist surface charge is crucial in achieving a high initial development rate, which might be a more accurate assessment of developer performance than developer contrast. Finally, they showed that with a high-development-rate process, a short duration development of 15 s was sufficient to resolve high-resolution structures in 15-nm-thick resist, while a longer development degraded the quality of the structures with no improvement in the resolution

    Mold Fabrication for 3D Dual Damascene Imprinting

    Get PDF
    Previously, a damascene process based on nanoimprint lithography has been proposed (Schmid G M, et al. in J Vac Sci Technol B 24(3) 1283, 2006) to greatly reduce the fabrication steps of metal interconnection in integrated circuit. For such a process to become a viable technique, a mold having two pattern levels with precise alignment between them must be fabricated first. To this end, this work demonstrates a “self-aligned” fabrication process where the two pattern levels would be perfectly aligned if ignoring the noise during e-beam writing. The process is based on one EBL on a bi-layer resist stack, with the sensitivity for the top layer much higher than that of the bottom layer, which enables separate pattern transfer of the two pattern levels. Using ZEP-520A and poly(dimethylglutarimide) (PMGI) resists, we fabricated pillars having a diameter of 150 nm sitting on ridges having a width of 1.5 μm, which can be used to create via-holes and trenches for IC interconnect by nanoimprint lithography. The current process can also find applications in other areas that require two-level patterning with precise alignment between them
    • …
    corecore