We describe repulsively interacting Bose-Einstein condensates in spatially
correlated disorder potentials of arbitrary dimension. The first effect of
disorder is to deform the mean-field condensate. Secondly, the quantum
excitation spectrum and condensate population are affected. By a saddle-point
expansion of the many-body Hamiltonian around the deformed mean-field ground
state, we derive the fundamental quadratic Hamiltonian of quantum fluctuations.
Importantly, a basis is used such that excitations are orthogonal to the
deformed condensate. Via Bogoliubov-Nambu perturbation theory, we compute the
effective excitation dispersion, including mean free paths and localization
lengths. Corrections to the speed of sound and average density of states are
calculated, due to correlated disorder in arbitrary dimensions, extending to
the case of weak lattice potentials.Comment: 23 pages, 11 figure