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Some dogs do not make a full recovery following medical or surgical management

of acute canine intervertebral disc herniation (IVDH), highlighting the limits of currently

available treatment options. The multitude of difficulties in treating severe spinal cord

injury are well-recognized, and they have spurred intense laboratory research, resulting

in a broad range of strategies that might have value in treating spinal cord-injured dogs.

These include interventions that aim to directly repair the spinal cord lesion, promote

axonal sparing or regeneration, mitigate secondary injury through neuroprotective

mechanisms, or facilitate functional compensation. Despite initial promise in experimental

models, many of these techniques have failed or shown mild efficacy in clinical trials

in humans and dogs, although high quality evidence is lacking for many of these

interventions. However, the continued introduction of new options to the veterinary

clinic remains important for expanding our understanding of the mechanisms of injury

and repair and for development of novel and combined strategies for severely affected

dogs. This review outlines adjunctive or emerging therapies that have been proposed

as treatment options for dogs with acute IVDH, including discussion of local or

lesion-based approaches as well as systemically applied treatments in both acute

and subacute-to-chronic settings. These interventions include low-level laser therapy,

electromagnetic fields or oscillating electrical fields, adjunctive surgical techniques

(myelotomy or durotomy), systemically or locally-applied hypothermia, neuroprotective

chemicals, physical rehabilitation, hyperbaric oxygen therapy, electroacupuncture,

electrical stimulation of the spinal cord or specific peripheral nerves, nerve grafting

strategies, 4-aminopyridine, chondroitinase ABC, and cell transplantation.

Keywords: alternative therapies, interventions, dog, intervertebral disc disease, cell transplantation, spinal cord

injury, canine
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INTRODUCTION

Current treatment for acute canine intervertebral disc herniation
(IVDH) can be divided into medical/conservative or surgical
management. The decision as to which to pursue depends largely
on the severity of neurologic signs. These might be due to either
reversible or irreversible damage to the spinal cord itself, with
some resulting from tissue ischemia that is difficult to counteract
and others resulting from spinal cord compression that are easily
reversible. Medical management commonly consists of activity
restriction, pain, and anti-inflammatory medications. The goals
are: (i) to avoid further disc herniation to minimize additional
damage to the spinal cord; (ii) provide pain relief; (iii) allow the
extruded disc material to gradually dissipate by phagocytosis over
time; (iv) and leave the ruptured disc annulus to seal by fibrosis
over time. Surgical intervention is used to alleviate persistent
spinal cord compression. The reader is directed to the article,
“Current approaches to the management of acute thoracolumbar
disc extrusion in dogs” for more information regarding the
evidence for the commonly applied treatment options.

Neither medical nor surgical management currently aim
to repair the damaged intervertebral disc, nor heal the
injured spinal cord, and there are limits to the recovery
that can be attained. Severe injuries still result in incomplete
recovery and unsatisfactory functional status. Although largely
understandable, with restoration of function to spinal cord
injured individuals recognized as a holy grail for centuries, this
failure has prompted a vast effort in neuroscience research. The
aim is to develop strategies that directly target the injury within
the spinal cord, limit the extent of secondary injury, facilitate
regeneration of axons, or increase compensatory plasticity of the
surviving tissue. Many neuroprotective and neuro-regenerative
therapies have shown promise in pre-clinical experimental
models but few have made it beyond this phase and when they
have, repeatedly failed to successfully translate to humans or dogs
with naturally-occurring spinal cord injury (SCI) (1, 2). In fact, it
has been reported that only about one-third of animal studies for
any disease considered to have a high likelihood of translation
into human medicine actually progressed to the clinical trial
stage and even fewer were associated with any currently available
intervention (3, 4). While this should not deter researchers and
clinicians from seeking novel treatment options for the injured
spinal cord, it does highlight the huge hurdles facing such
work and underscores the difficulty of the problem. Importantly,
knowledge of what has been done, successful or otherwise,
is crucial to broadening our understanding mechanisms of
injury and recovery, developing new techniques, or adapting
and combining previously suggested treatment modalities for
application to clinical populations.

This review will summarize adjunctive or emerging therapies
that have been proposed as treatment options for dogs with
acute IVDH. We will focus on data available from companion
dogs with naturally-occurring SCI but also include data on
experimental dogs where relevant. This is the information that
we hope will be most useful to veterinary clinicians and might
soon be applicable in the neurology clinic. We will focus on
therapies that can be applied following acute SCI (within 1

month of injury) but also discuss therapies that might aid in
repairing the spinal cord or restoring function in the subacute
to chronic patient (> 1 month from injury). We have divided
treatments in those delivered at or close to the injury site and
those delivered systemically.

ADJUNCTIVE THERAPIES IMPLEMENTED

IN THE ACUTE PHASE

Local/Lesion-Based Interventions
A variety of locally administered interventions have been
proposed in the treatment of SCI that are applied directly to the
lesion site in addition to, or in lieu of, decompressive surgery.
These include laser therapy, application of electromagnetic fields
or oscillating electrical fields, adjunctive surgical techniques,
locally-applied spinal cord hypothermia, and cell transplantation.
Cell transplantation strategies will be discussed in the subacute to
chronic section in the second part of this review.

Laser Therapy
Low-level laser therapy or photobiomodulation has been a
reported therapy for various injuries, including SCI. In the
nervous system, it has been proposed to enhance neuronal
metabolism and sprouting and to decrease glial scar formation
and the immune response (5, 6). While not fully understood, the
mechanisms of action are reported to include inhibition of NF-kB
(which reduces expression of pro-inflammatory mediators) and
stimulation of cytochrome oxidase (whichmight help to optimize
oxidative metabolism) (5, 6). In an unblinded, unrandomized
prospective study of non-ambulatory paraparetic or paraplegic
dogs with IVDH, with or without intact pain perception at
enrolment and treated surgically, laser therapy applied post-
operatively (for 5 days or until independent ambulation was
achieved) was compared to dogs that did not receive additional
therapy. The reported time to achieve independent ambulation
was shorter in the laser therapy group (3.5 days) compared to
untreated control dogs (14 days) (7). However, the characteristics
of the laser employed were not detailed making it difficult
to try to replicate results. In contrast, a blinded, randomized
prospective study evaluating post-operative laser therapy with
or without physical rehabilitation in non-ambulatory dogs
undergoing surgery for IVDH revealed no difference in recovery
(8). Importantly, both studies included a relatively small number
of dogs in each treatment group, including few with severe
injury, did not incorporate pre-study sample size calculations,
and only looked at short-term outcome variables. No adverse
events attributable to laser therapy were reported.

Electromagnetic and Electrical Field

Therapies
While application of a pulsed electromagnetic field (PEMF)
device to the site of injury has been most widely studied in pain
and wound repair, PEMF therapy has been reported to reduce
back and neck pain in people and possibly improve recovery from
SCI in an experimental model in cats (9–13). The mechanism of
action of PEMF in pain relief is likely multifactorial and there is
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limited evidence in central nervous system injury that it can aid
in promoting axonal regeneration or sparing of surviving axons
(9, 10). In a recent blinded, randomized prospective clinical trial
of paraplegic dogs with absent pain perception secondary to
IVDH that underwent surgery, PEMF reduced post-operative
incisional pain (as measured by increased mechanical sensory
thresholds) compared to sham-treated control dogs. The authors
also reported a possible neurologic benefit based on measuring
injury severity using plasma GFAP concentration and recovery
of proprioceptive placing (14). However, sample size was small
and multiple outcomes were evaluated.

Oscillating electrical field therapy, which is suggested to
enhance axonal regrowth and improve functional recovery, has
been applied to spinal cord-injured animals (15). In paraplegic
deep pain negative dogs secondary to IVDH treated surgically,
oscillating electrical field therapy was delivered post-operatively
via electrodes sutured to the edges of the laminectomy site and
attached to an implantable device. Treatment was administered
for a variable number of weeks post-operatively and the device
and therapy were well-tolerated. Dogs treated with the electrical
fields had improved neurologic outcomes at 6 weeks and 6
months after surgery compared with sham-treated dogs (15, 16).
Despite initial promise, logistical, and technical issues hindered
further development of this treatment modality.

Local Hypothermia
Locally-applied spinal cord hypothermia has been rarely reported
as a treatment for SCI in dogs in experimental studies (17–20).
Hypothermic conditions (4–6◦C) were applied to the spinal cord
initiated at 15min to 4 h after injury and maintained for variable
durations ranging from 1 to 18 h. In these studies, hypothermia
was reported to improve functional outcome in experimentally-
injured dogs compared to untreated controls with a possible
additive benefit in combination with other therapies. However,
reported drawbacks included extensive technical and personnel
demands, the potential for inadvertent damage to spinal cord
through prolonged hypothermia and lack of information on
long-term outcomes or sequelae (17). This technique has not
been reported in dogs with naturally-occurring injury secondary
to IVDH but mean body temperature was identified as an
exploratory variable worthy of further evaluation in prospective
studies in dogs with IVDH (21). Local and systemic hypothermia
continue to be investigated in human medicine (22, 23).

Adjunctive Surgical Techniques to Spinal

Cord Decompression: Durotomy and

Myelotomy
The role and indications for decompressive surgery as well
as fenestration as a standalone technique for acute IVDH
are outlined in the companion article in this issue, “Current
approaches to the management of acute thoracolumbar disc
extrusion in dogs.” Adjunctive surgical techniques of durotomy
and myelotomy are summarized below.

Durotomy has been investigated as a means to decompress
a swollen spinal cord, to improve spinal cord blood flow
and oxygen delivery and to evaluate for gross myelomalacia

as a prognostic indicator (24–27). Durotomy with or without
duroplasty has been reported to have positive effects in multiple
experimental rodent and human SCI studies; however, reported
functional impact is variable, adverse effects are possible, and
controlled studies are lacking (24). In experimental studies
in dogs, immediate but not delayed (by 2 h) durotomy was
reported to enhance recovery rate and overall neurologic
outcome (25, 27, 28). In clinical canine patients, durotomy has
typically been reserved for severely affected dogs. Blaser et al.
demonstrated that durotomy combined with decompressive
hemilaminectomy in dogs with IVDH (of varying severity
ranging from ambulatory paraparesis to paraplegia with intact
pain perception) transiently increased intraoperative spinal cord
blood flow, although it returned to normal or lower within 15min
(26). There was no association detected between durotomy and
1-day post-operative neurologic outcome. However, none of the
included dogs were those that have the most to benefit from
durotomy (i.e., those paralyzed with absent pain perception at
presentation), thereby potentially limiting the generalizability of
these results. In an additional retrospective study of 48 paraplegic
dogs that were deep pain negative secondary to IVDH, no
difference was detected in recovery of ambulation between those
that did or did not receive a durotomy in conjunction with
hemilaminectomy (29), although confounding by severity is a
clear possibility in this study.

More recently, contrasting evidence has been provided
by Takahashi et al. who reported on 116 paraplegic deep
pain negative dogs with thoracolumbar IVDH treated with
hemilaminectomy alone (n = 65) or hemilaminectomy plus
durotomy (n = 51) (30). A large proportion of dogs recovered
following durotomy vs. hemilaminectomy alone (56.9 vs. 38.5%).
The low rate of recovery in the non-durotomy group (compared
to most published reports of a 50–60% success rate with
decompressive surgery) was attributed to inclusion only of
cases that had imaging features associated with poor prognosis.
Notably, no dogs in the durotomy group compared to 14
in the hemilaminectomy-only group developed progressive
myelomalacia. In another recent report, “extended durotomy” of
four vertebral lengths centered over the site of herniation was
also investigated in 26 consecutive paraplegic dogs that were deep
pain negative secondary to thoracolumbar IVDH (31). Of the
26 dogs included in the study, 4 dogs were lost to follow-up
while 16/22 remaining dogs recovered independent ambulation
within 6 months (with 15/16 also recovering continence) (31).
No adverse events were attributable to the extended durotomy;
one dog developed progressive myelomalacia. These studies
together reinvigorate the discussion as to whether durotomy
might be beneficial in dogs with severe injury, especially in
preventing development of progressivemyelomalacia. Additional
information is needed regarding single vs. extended durotomy,
the role of duroplasty, patient selection among severely
affected dogs, and the risk and functional impact of long-
term consequences such as fibrosis that might negatively impact
neurologic function.

Dorsal midline myelotomy has been reported as a treatment
for SCI to decrease intramedullary pressure, increase the oxygen
interface, remove necrotic debris, and release noxious vasoactive
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substances trapped in the spinal cord post-injury (24, 32).
In an experimental canine model, myelotomy in combination
with dimethyl sulfoxide (DMSO) appeared to have an additive
benefit on neurologic recovery compared to other experimental
treatment combinations, although myelotomy alone was not
evaluated (32). In another study on experimental SCI followed
by myelotomy, there was immediate improvement in sensory
evoked potential amplitude in 2/5 dogs (33), suggesting
temporary improvement in conduction, but it is unclear if this
is sustained or associated with functional benefit. Myelotomy
performed in normal dogs has been associated with extensive
gray matter necrosis including destruction of ventral horn motor
neurons in some dogs (34). However, clinical impairment from
the procedure was generally mild to moderate and improved
over several weeks as long as the lumbar intumescence was
avoided (34). While a positive effect has been reported in 80%
of pre-clinical animal studies, there are no published studies
in naturally-occurring injury in dogs and very limited data
available in humans (24). The lack of controlled studies is likely
attributable to the invasiveness of myelotomy and perceived
potential to exacerbate secondary injury and for long-term
adverse sequelae.

SYSTEMIC

COMPOUND/MEDICATION-BASED

THERAPIES

A variety of systemic or “whole dog” interventions have been
applied to treat dogs with IVDH. Administration of some type
of systemic medication or chemical as a neuroprotective strategy
for the treatment of acute IVDH has been reported to be
recommended by up to a quarter of specialist veterinarians
(35). This varied greatly by treatment type, being highest
for steroid administration (34% of boarded surgeons, 23%
of boarded neurologists recommended) and <10% for other
interventions (35). Adjunctive, non-medication-based therapies
typically applied post-operatively were also variably reported as
part of an integrated treatment strategy. Physical rehabilitation
was most common and recommended by approximately half of
treating veterinarians (35).

Corticosteroids
Corticosteroids are a commonly administered adjunctive therapy
for the treatment of IVDH in dogs. Methylprednisolone (MPSS)
at so-called “shock doses” has received the most attention and
been most extensively examined but dexamethasone has also
been investigated in dogs (17–19, 32, 36–43). MPSS has been
advocated as a neuroprotective treatment for acute SCI through
its mitigation of secondary injury primarily through amelioration
of lipid peroxidation, other free radical, and oxidative damage
and reperfusion injury (44). Although initial results of human
clinical trials appeared supportive of use of high dose MPSS for
treatment of SCI, subsequent re-analysis of the data cast doubt
on the original treatment effect and highlighted risks of adverse
effects (45–47). In dogs with IVDH, a benefit for MPSS has not
been identified and complications have been reported (36, 42,

43, 48) and the use of MPSS remains controversial (46). The role
of corticosteroids in this population is discussed in depth in the
companion article “Current approaches to the management of
acute thoracolumbar disc extrusion in dogs.”

Polyethylene Glycol
Polyethylene glycol (PEG) a hydrophilic polymer capable of
fusing cell membranes has been infrequently investigated as a
treatment for acute SCI with inconsistent results. In an acute
canine spinal cord transection model, immediate application of
PEG at the site of injury was determined to be beneficial and
to re-establish anatomic continuity (49). In a study of dogs
with acute paraplegia with absent pain perception due to IVDH,
intravenous PEG administration appeared safe, and associated
with modestly improved neurologic status 6–8 weeks after injury
and surgery compared to what might be expected in similarly
affected dogs not receiving PEG (50). In a more recent clinical
trial of acute paraplegic dogs with absent pain perception due
to IVDH, no benefit was demonstrated for PEG compared to
placebo (36).

Matrix Metalloproteinases
Matrix metalloproteinases (MMPs) are released by cells to
degrade the extracellular matrix. MMPs, specifically MMP-9 and
MMP-12, have been shown to be upregulated following SCI
and are implicated in the deleterious secondary injury cascade.
In two prospective studies, Levine et al. evaluated a broad-
spectrum MMP inhibitor, GM6001, in dogs treated surgically
for IVDH resulting in acute (<48 h) non-ambulatory paraparesis
or paraplegia (51, 52). All dogs were treated immediately before
decompressive surgery with the compound, GM6001, combined
with DMSO (n= 81), DMSO alone (n= 84), placebo (n= 41), or
received no treatment (n= 20). Transient injection site reactions
were common in the GM6001 treated dogs (which could have
compromised the blinding) and a subset (n = 6) developed
self-limiting musculoskeletal signs, but it was otherwise well-
tolerated. Treatment with GM6001 with DMSO resulted in
improved neurologic recovery compared to placebo but was
not different compared to DMSO alone. While efficacy for
treatment with this MMP inhibitor was not demonstrated with
regard to sensorimotor recovery, it did increased long-term
bladder compliance.

Dimethyl Sulfoxide
Dimethyl sulfoxide (DMSO) is most often used as a vehicle to
improve drug solubility but has been uncommonly investigated
as an intervention for brain and SCI (38, 52). Its purported
benefit in central nervous system trauma has been attributed to a
reduction in edema, diuretic, anti-inflammatory and vasodilatory
effects, and cellular protection from mechanical damage (38, 53).
In several studies utilizing an experimental weight drop model,
dogs were treated with DMSO (1–4.5 g/kg/d in 40% solution with
0.9% NaCl) alone or in combination with other experimental
therapies and compared to control dogs (38, 53–55). In most,
DMSO was reported to be beneficial when initially administered
within 1 h of induced trauma although one study reported
no benefit and no clear synergistic effect was observed by
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combining DMSO with dexamethasone or other experimental
therapies. As outlined above, DMSO (1 g/kg) was shown to
be beneficial compared to placebo in a clinical trial of dogs
with IVDH (52). However, Hoerlein et al. also investigated this
in acute spinal cord trauma in dogs and found it not to be
useful compared to dexamethasone (56). Toxicity due to DMSO
was not observed in any of the reported studies and further
investigation is warranted regarding its potential therapeutic
effect in this population.

Other Compounds/Medications
N-acetylcysteine (NAC) is a precursor of glutathione with potent
antioxidant as well as anti-inflammatory and neuronal protective
properties that has been proposed as a treatment for acute SCI
(57). In a cohort of 70 dogs undergoing surgery for acute IVDH,
NAC administered IV prior to decompressive surgery showed no
benefit compared to placebo with regard to neurologic outcome
or rate or recovery (58). There is only anecdotal reference of
veterinarians using other antioxidants such as coenzyme Q10
or vitamin E following SCI in dogs (35, 59). While optimizing
nutritional status, weight management, and diets to reduce fecal
volume in incontinent dogs are variably implemented as part of
post-injury management in dogs, there is no evidence to support
specific antioxidant nutraceutical supplementation or nutritional
strategies to treat dogs with acute SCI.

There are other rarely reported interventions with
limited, mostly experimental evidence in dogs. Analogs of
the hypothalamic hormone, thyrotropin releasing hormone
(TRH), have been reported to inconsistently improve outcomes
after SCI in humans and experimental models (59). In a pilot
study of dogs with IVDH, a benefit of a TRH analog was not
identified compared to no treatment (60). Crocetin, a carotenoid
that increases oxygen diffusion in plasma, was investigated in an
experimental weight drop model as a means to counteract local
hypoxia and subsequent ischemic necrosis following SCI. Results
showed improved neurologic function in crocetin-treated
dogs at 4 weeks post-injury compared to control dogs (61).
Hyperosmotic agents, mannitol, urea and hypertonic dextrose,
have also been evaluated with the goal of reducing swelling
(32, 53, 54, 62) but did not appear to improve neurologic
recovery compared with control dogs. Improvement in spinal
sensory evoked potentials did occur following mannitol infusion
in one study (32, 53, 54, 62). Phenytoin, an anticonvulsant, was
explored as a SCI treatment based on experimental evidence
that it decreases edema of neural tissues through inhibition of
antidiuretic hormone and inactivation of catecholamines (40).
In an experimental dog model, phenytoin resulted in improved
outcome compared to untreated dogs and was at least as effective
as dexamethasone, although hypotension and respiratory
depression were possible adverse effects (40). Neither reserpine,
an alkaloid medication used to treat high blood pressure, nor
chlorpromazine, a phenothiazine with various psychiatric and
other uses, were effective as treatments for experimentally
induced injury in dogs (32, 39). There is no convincing evidence
for the use of these compounds in dogs with acute SCI due
to IVDH.

SYSTEMIC NON-MEDICATION-BASED

THERAPIES

Various systemic, non-medication-based therapies have
been advocated for the treatment of acute SCI in dogs
including physical rehabilitation, hyperbaric oxygen therapy,
and electroacupuncture.

Physical Rehabilitation
Physical rehabilitation in dogs recovering from surgery due
to IVDH is being increasingly utilized, recommended by
58% of board-certified surgeons and neurologists surveyed
(35, 63). While timing of initiation and specific protocols
vary, physical rehabilitation in the neurologic patient typically
consists of some combination of passive range of motion,
massage, cold or warm packing, assisted balance, standing,
coordination and land treadmill, or over-ground walking
exercises and aquatic therapy such as underwater treadmill
walking or swimming (64). It can be performed on an in-
patient or out-patient basis in dogs with specific aspects
tailored to patient function (e.g., underwater treadmill walking
sessions are typically initiated once motor function is present).
Additional specific therapies including therapeutic laser therapy,
acupuncture, and neuromuscular electrical stimulation are
variably included (63, 64).

For details on the currently available evidence regarding
the role of physical rehabilitation in dogs recovering from
IVDH, the reader is referred to the companion article “Current
approaches to the management of acute thoracolumbar disc
extrusion in dogs” in this issue. While there have been relatively
few studies performed in this population and the results have
been mixed, early post-operative initiation of rehabilitation
has been determined to be safe with no associated adverse
events or increased post-operative pain (8, 65–70). Inclusion
of dogs of variable neurologic severity limits making direct
comparisons between studies and conclusions regarding efficacy.
Additionally, the role of physical rehabilitation in medically
managed presumptive or confirmed IVDH has not been
evaluated. Additional investigation of physical rehabilitation
in dogs recovering from IVDH is warranted focusing on
optimization of protocols (e.g., specific modalities, timing, and
duration) and development of validated, objective outcome
measures such as the Finnish neurological function testing
battery for dogs (FINFUN) (71).

Hyperbaric Oxygen Therapy
Hyperbaric oxygen therapy has been uncommonly reported as a
treatment for acute SCI. The proposed mechanism is to increase
the tissue partial pressure of oxygen and counteract the adverse
effects of spinal cord hypoxia associated with injury (72). There
is limited experimental evidence in dogs suggesting a potential
benefit of hyperbaric oxygen therapy compared to untreated
controls but no additive effect was appreciated when combined
with DMSO (54, 72). There are no reports in dogs with IVDH
though it is used in clinical cases by some veterinarians (35).
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Electroacupuncture
Electroacupuncture has been occasionally reported as a
therapy for acute SCI in dogs (73, 74). Its mechanism of
action is unknown, but it might have analgesic and anti-
inflammatory effects as well as facilitating axonal repair and
regrowth (37, 63). In an experimental canine SCI model,
electroacupuncture (initiated 48 h post-injury and continued
every other day) resulted in improved rate of recovery compared
to untreated controls; the benefit appeared synergistic with
concurrent MPSS (37). In one retrospective and two prospective
case series of dogs with thoracolumbar IVDH of variable
severity, electroacupuncture (administered 1–3 ×/week
for 1–6 months between studies) was reported to be more
effective than decompressive surgery alone for regaining
ambulation (75), and was associated with shorter time to
walking and a greater proportion of dogs becoming ambulatory
compared to medical management alone (73, 74). There was
no significant difference in recovery among deep pain negative
dogs managed medically with or without electroacupuncture
(74). Study limitations for the prospective studies included
lack of blinding or randomization, use of historical controls
and small sample size within each neurologic grade (74, 75).
There is equivocal evidence that electroacupuncture decreases
the severity and duration of post-operative pain in dogs with
IVDH (74, 76). Electroacupuncture has also been combined
with stem cell transplantation in a small group of dogs
chronically (> 3 months) deep pain negative following acute
IVDH (77). This pilot study showed these interventions were
feasible and safe but case numbers in each treatment group
were small.

ADJUNCTIVE THERAPIES IMPLEMENTED

IN THE SUBACUTE-TO-CHRONIC PHASE

Treatment strategies are also being explored for dogs with
permanent impairment following acute SCI. These are typically
applied in the subacute-to-chronic stage (> 1 month from the
time of injury) and include spinal cord radiation, electrical
stimulation of the spinal cord or specific nerves below the injury,
nerve grafting, 4-aminopyridine, chondroitinase ABC delivery,
and cell transplantation.

Spinal Cord Radiation
Spinal cord radiation has been evaluated in rodents and in an
experimental model in Beagles (78). Radiation of the injured
cord aims to interfere with the cell cycle to counteract the
development of localized chronic inflammation, reduce glial scar
formation, and facilitate axonal regrowth and healing (78, 79).
In Beagles treated with daily radiation for 2 weeks following
spinal cord hemitransection, there was reduced astrocyte
and microglial activation, reduced expression of inflammatory
mediators, improved long-range axonal regeneration, and
improved locomotor recovery (79). This therapy has not been
reported in dogs with naturally-occurring injury secondary
to IVDH.

Functional Electrical Stimulation
Functional electrical stimulation has not yet been reported in
dogs, but a wearable device is being developed that might be
useful in dogs with incomplete recovery from acute IVDH (80).
Short-term, low-intensity electrical stimulation of the spinal cord
with or without stem cell transplantation has been performed
in chronically paraplegic dogs (81). While electromyographic
changes in pelvic limb muscles implied improvement in motor
conduction, further investigation would be necessary to optimize
therapy and determine if there is a clinical benefit (81).
Additionally, there is experimental evidence and data in dogs
with naturally-occurring injury for electrical stimulation of
peripheral nerves or nerve roots to aid in restoration of urination
and defecation (82–84). Electrical sacral nerve stimulation in
dogs is covered in the companion article “Bladder and bowel
management in dogs with spinal cord injury” in this issue.

Peripheral Nerve Grafting
Grafting of peripheral nerves from above the injury level
(e.g., specific intercostal nerves) into the distal portion of
experimentally transected spinal cord has also been performed
in dogs with the goal of harnessing the regenerative potential of
the peripheral nervous system (85–87). Nerve to nerve or nerve
root grafting techniques have also been reported as therapies
that aim to restore function while bypassing the spinal cord
lesion directly. Toreih demonstrated the feasibility of intercostal
to gluteal nerves and ilioinguinal and iliohypogastric to femoral
nerves in a dog spinal cord hemisection model (88). Six months
following these nerve transfer procedures, there was clinical
and electrophysiological evidence of some recovery of hip,
gluteal and knee function, though spontaneous improvement
is well-known to occur in spinal cord hemisection models and
could have resulted in the improvement observed. Vagophrenic
nerve anastomosis was also shown to be anatomically feasible
in dogs with the ultimate goal to provide a conduit for
restoration of respiratory function after severe cervical SCI (89).
Nerve anastomoses to reinstate bladder function have also been
performed experimentally in dogs (90–94).

Molecular Compounds Given in the

Chronic Phase of SCI
Additional compounds that have been investigated in
chronically impaired dogs include 4-aminopyridine (4AP)
and chondroitinase ABC. 4-aminopyridine is a potassium
channel antagonist that has been shown to restore hind limb
motor function in some dogs with chronic thoracolumbar
SCI (95, 96). This effect is mediated through enhancement of
central conduction via anatomically intact axons traversing
the site of injury as well as direct synaptic effects (97–99).
Response following oral administration is highly variable
between individual dogs with a minority regaining independent
ambulation (96, 98). Lack of predictable response and narrow
therapeutic window have limited widespread use of this
medication among chronically paralyzed dogs.

Chondroitinase ABC is an enzyme that degrades chondroitin
sulfate proteoglycans which are key components of the glial scar
and inhibitors of axonal regeneration following SCI (100). This
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has led to active research regarding the use and optimization of
chondroitinase ABC to treat SCI (100). A prospective clinical
trial of intraspinal injection of a long acting chondroitinase
ABC in dogs with naturally occurring severe SCI reported
functional improvements compared to sham controls including
improved thoracic to pelvic limb coordination and three dogs
with restoration of ambulation (101). In an experimental
canine model, the combination of chondroitinase ABC with
mesenchymal stem cell transplantation was also reported to
improve neurologic deficits and enhance neural regeneration
(102). However, this study had a small number of dogs, lacked
blinding of the observations and the locomotor outcomemeasure
might not reflect voluntary movements (102).

CELL TRANSPLANTATION STRATEGIES

Transplantation of cells into the spinal cord has been investigated
in dogs either after creating an experimental spinal cord lesion
or after naturally-occurring SCI. This involves predominantly
stem cell therapies such as mesenchymal stem cells of various
origin, neural stem cells, or bone marrow-derived mononuclear
cells but other fully differentiated cells have been used such
as olfactory glial cells, olfactory mucosal cells, Schwann cells,
or macrophages. Most commonly, the cell transplants are
administered via intraparenchymal or intrathecal injection but
intravenous delivery has also been reported.

Cell Transplantation for Spinal Cord Repair

in Experimental Dogs
Placement and inflation of a ventral epidural balloon has been
used to produce experimental compression and contusion of
the dog spinal cord (103, 104). Developed in the seventies by
investigators such as Kobrine and Griffiths, this technique has the
advantage of producing a closed injury, without the need to open
the spinal canal via a laminectomy, and causes more vascular
injury (ischemia) than weight-drop models (105, 106), although
lesions lack reproducibility. Using this model, the effect of canine
and human umbilical cord blood-derived mesenchymal stem
cells, adipose-derived stem cells (some genetically modified), or
bone marrow-derived mesenchymal stem cells (107–117) has
been tested. These cell transplants were reported to improve
locomotor function, but experimental groups consisted of small
numbers (between two and five), observers were not blinded
and tail support was used when testing locomotion [which
is likely to trigger “involuntary” stepping pelvic movements
that are independent from brain connections (118, 119)].
However, histopathological data demonstrated survival of some
transplanted cells, albeit with limited integration within the host
spinal cord, suggesting that the locomotor improvement could
have been due to secretion of trophic or growth factors into the
region of injury (107).

A canine hemisectionmodel in which a gel seededwith human
neural stem cells was placed immediately into the hemisected
spinal cord gap (120, 121) showed better locomotor recovery and
more ascending sensory axons in dogs receiving cells alone in one
study (121) and no effect in another study (122).

A canine transection model has been reported from groups in
China recently, testing the effect of collagen-based biomaterial
loaded with human umbilical cord-derived mesenchymal
stem cells (123), human placenta-derived mesenchymal stem
cells (124), or bone marrow-derived mesenchymal stem cells
differentiated into neuron-like cells (125). Recipients of cells had
improved locomotor scores compared to controls but remained
non-ambulatory and the studies were not blinded. Interestingly,
cells survived up to 6 months.

A group from Egypt described a compression/contusion
model using a “clip” placed on the spinal cord at the L4 spinal
cord segment; neural-induced bone marrow derived stem cells
were then injected intrathecally by lumbar puncture 2 weeks
after the injury by a blinded investigator (126). The injury
initially caused paralysis and loss of pain perception in all
dogs, but those receiving the cell transplant had much greater
recovery of motor function compared to controls. Further,
cells could be found surviving in the lesion at 16 weeks
after injection. This work represents a lesion and intervention
paradigm that are much closer to clinical injuries than other
experimental models.

In summary, there is a growing number of transplantation
experiments originating primarily from Korea and China which
have generally low power and follow the same experimental
pattern with varying cell types. One group in Korea translated
their experiment to the clinic by transplanting adipose-derived
stem cells (112) to 9 companion dogs with paraplegia and no
deep pain (127) but trial design lacked clear inclusion criteria
and blinding. Therefore, the utility of these treatments for
clinical populations remains to be validated in randomized,
blinded studies. A cautious approach has been followed
by other laboratories, for example, McMahill et al. at the
University of California Davis Medical Center, where they
have transplanted canine epidermal neural crest stem into
normal canine spinal cord (128) and focused on developing
strong outcome measures using cell tracking with magnetic
resonance imaging and detailed gait analysis. They showed
survival of cells at 3 weeks post-transplantation and are
likely now envisaging clinical trials in companion dogs with
naturally-occurring lesions. There is also uncertainty as to which
cell type, stem cells or other differentiated cells, should be
prioritized. For example, two other groups have postulated
that transplantation of Schwann cells purified from peripheral
nerves or nerve roots could be a repair strategy worth pursuing
following SCI in dogs (129, 130). Additionally, transplantation
strategies can be leveraged to investigate application of biologics
(e.g., chondroitinase ABC) to the lesion site as a means
to promote cell survival, regrowth, or mitigate inhibition of
axonal regeneration.

Cell Transplantation Within the Spinal Cord

in Dogs With Naturally-Occurring Injury
One of the best known cell type studied in dogs is olfactory
ensheathing cells, which are not stem cells but fully differentiated
cells located within the olfactory mucosa and olfactory bulb,
forming an interface between the peripheral and central nervous
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systems (131–133). Olfactory ensheathing cells have been reliably
cultured for a long time in neuroscience (134), including in
dogs (135–138) and have been used in clinical applications
(139, 140). They are recognized for their regenerative properties
when transplanted within a lesion of the central nervous
system. In particular, they are able to form channels guiding
axonal regrowth (141) and to remyelinate axons (142). In a
randomized controlled trial in dogs with irreversible chronic
SCI, autologous olfactory ensheathing cells obtained from the
nasal mucosa have been shown to improve thoracic to pelvic
limb coordination (143). However, these cells were not able to
restore brain-controlled functions such as urinary continence,
prompting research into strategies to improve their efficacy.
More recently, olfactory ensheathing cells have been engineering
to express the chondroitinase ABC enzyme that degrades the
glial scar (144), though these have not yet been transplanted
into dogs.

In the last decade, there has been an increasing number
of publications from Japan, Brazil, Turkey, and India testing
different cell transplants in dogs with naturally-occurring injury.
First in Japan, two groups reported that autologous bone marrow
stromal or mononuclear cell transplants were safe in 7 (145) and
1 (146) dogs with chronic paraplegia and absent deep pain.

Since 2014, institutions in Brazil have reported seven trials
testing safety or efficacy of various cell transplants (within
the spinal cord or in the sub-arachnoid or epidural space) in
small series of companion dogs, sometimes with concomitant
spinal cord decompression, or in association with other
alternative therapies such as electroacupuncture (77) or low-
intensity electrical stimulation (81). The cells tested have been
either autologous bone marrow mesenchymal stem cells (147),
allogenic fetal bone marrow stem cells (148), allogenic canine
adipose tissue-derived mesenchymal stem cells (81, 149, 150) or
immature dental pulp stem cells (77, 151).

The follow-up duration in these studies was usually of several
months. Taken together, the results suggest an improvement
of locomotor function, based on an increase in locomotor
scores. However, these cases rarely achieved scores suggesting
unassisted ambulation and for those that did walk again, they
remained deep pain negative suggesting that the locomotion
could have been independent of the therapeutic intervention (i.e.,
“spinal walking”). Interestingly, in some dogs, there was reported
recovery of deep pain (147, 148) but no concomitant recovery of
locomotion. These findings could indicate that the transplanted
cells have a beneficial effect. However, data are limited and these
studies also illustrate the heterogeneity of clinical lesions and the
need to increase case numbers to better assess the efficacy of cell
transplant techniques.

In Turkey, Besalti et al. transplanted intramedullary
neurogenically-induced bone marrow-derived mesenchymal
stem cells 42 days after the initial injury (152). They conducted
detailed follow-up over 12 months and found that 2 out of 13
dogs recovered somatosensory evoked potentials and magnetic
motor evoked potentials, while some other dogs had improved
gait scores (6/13) and regained deep pain sensation. Bhat
et al. in India also reported a trial in 44 dogs testing bone
marrow mesenchymal stem cells without decompressive surgery

(153). The authors claimed improved deep pain sensation and
locomotion, but the change compared to the control group
remained clinically small.

Altogether, the results of various cell transplantation studies
in dogs are encouraging, although most studies remain of low
power and preliminary. They have proven safety, but the recovery
is always limited to a proportion of studied dogs and recovery of
one function at a time, either locomotion, continence, or pain
perception. This perhaps suggests that other factors than the
actual treatment led to the change in function and highlights the
severity of lesions and difficulties in repairing them. A consensus
on which intervention holds the greatest promise would be useful
to then apply in large multicenter trials in dogs, where evaluation
of efficacy could be investigated with greater power.

CONCLUSIONS

In conclusion, we have outlined a variety of therapeutic strategies
that have been applied to dogs with SCI in both the acute as
well as subacute-to-chronic settings. These range from those
applied to the spinal cord directly to systemic treatments
and with variable goals from repair to compensation. While
some techniques are more promising than others, they all
serve to highlight the challenges in treating severe SCI and
in developing successful treatment options for a heterogeneous
clinical population. Moving forward, multimodal approaches to
therapy building on conventional treatment options will likely be
most successful.
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