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The main aim of this paper is to present MOGUL, a Methodology to Obtain Genetic
fuzzy rule-based systems Under the iterative rule Learning approach. MOGUL will
consist of some design guidelines that allow us to obtain different genetic fuzzy rule-based
systems, i.e., evolutionary algorithm-based processes to automatically design fuzzy rule-
based systems by learning andror tuning the fuzzy rule base, following the same generic
structure and able to cope with problems of a different nature. A specific evolutionary
learning process obtained from the paradigm proposed to design unconstrained approxi-
mate Mamdani-type fuzzy rule-based systems will be introduced, and its accuracy in the
solving of a real-world electrical engineering problem will be analyzed. Q 1999 John Wiley
& Sons, Inc.

1. INTRODUCTION

Nowadays, the most important applications of fuzzy set theory as developed
1 Ž .by Zadeh in 1965 are fuzzy rule-based systems FRBSs . These kinds of systems

constitute an extension of classical rule-based systems, because they deal with
fuzzy rules instead of classical logic rules. Thanks to this, they have been
successfully applied to a wide range of problems from different areas presenting
uncertainty and vagueness in different ways.2 ] 5

Ž .An FRBS presents two main components: 1 the inference system, which
puts into effect the fuzzy inference process needed to obtain an output from the

Ž . Ž .FRBS when an input is specified, and 2 the fuzzy rule base FRB representing
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the knowledge known about the problem being solved, constituted by a collec-
tion of fuzzy rules.

Two main tasks have to be performed to design an intelligent system of this
kind for a concrete application: to select the fuzzy operators involved in the
inference system, i.e., to define the way in which the fuzzy inference process will
be performed, and to derive an adequate FRB about the problem being solved.
The accuracy of the FRBS in solving this problem will depend directly on both
components.

The first design task has been widely analyzed in the specialized literature,
and a large quantity of theoretical and comparative studies have been carried
out in order to deal with the problem of the selection of the best possible fuzzy
operators in the inference system.6 ] 9

As regards to the second design task, it seems to be a more difficult
decision because the composition of the FRB depends directly on the problem
being solved. Due to the complexity of the FRB derivation, a large quantity of
automatic techniques have been proposed to put it into effect. In the last few
years, many different approaches have been presented taking evolutionary

Ž . 10 Ž . 11algorithms EAs , usually genetic algorithms GAs , as a base, constituting
Ž . 12,13the so called Genetic Fuzzy Rule-Based Systems GFRBSs . These kind of

systems are considered nowadays as an important branch of the Soft Computing
area14 in view of the large number of contributions developed in the last few

Ž .years see Ref. 15, Section 3.13, Ref. 16, Section 13 .
GFRBSs are based on combining the main feature of the FRBSs, interpola-

tive reasoning, a consequence of the cooperation between the fuzzy rules
composing the FRB, and of the EAs, the competition induced between the
population members to get the best possible solution to the problem. Obtaining
the best possible cooperation level in the FRB by inducing competition by
means of the EA is referred to as the cooperation vs. competition problem
Ž . 17CCP . All the GFRBSs have to deal with this problem to design accurate
FRBSs.

In this paper, we present MOGUL, a Methodology to Obtain Genetic fuzzy
rule-based systems Under the iterative rule Learning approach. This methodol-
ogy is composed of some design guidelines that, when assumed, will allow us to
obtain GFRBSs to design different types of FRBSs able to cope with problems
presenting different characteristics. The GFRBSs obtained following the
paradigm proposed will allow us to derive the whole FRB, that is, the fuzzy rules
themselves and the membership functions involved in them, when a set of
input-output data pairs about the problem being solved is available.

MOGUL will take a generic structure composed of different stages as a
base, with the aim of simplifying the search space tackled by the EA. To do so, it

Ž . 18will consider the iterative rule learning IRL approach, which is based on
decomposing the learning process into different stages, and, therefore, the
FRBS evolutionary design processes obtained following it will be multi-stage
GFRBSs. We will show the performance of one of them by using it to generate
some FRBSs to solve an Electrical Engineering problem, comparing it with



GENETIC FUZZY RULE-BASED SYSTEMS 1125

classical methods, Neural Networks and other GFRBSs presenting different
characteristics.

In order to put this into effect, we arrange this paper as follows. The next
section presents some preliminaries by briefly introducing the different types of
FRBSs, the GFRBSs, the IRL approach and the CCP. In Section 3, the basis
followed by MOGUL are presented. In Sections 4, 5, and 6, the particular
aspects related to each one of the three stages composing the GFRBSs obtained
from MOGUL are described. In Section 7, a brief analysis is presented on the
values of the parameters existing in them. Section 8 shows a specific evolution-
ary learning process for designing unconstrained approximate Mamdani-type
FRBSs, obtained following the MOGUL assumptions. In Section 9, the experi-
ments developed to solve the aforementioned problem are presented. Finally, in
Section 10, some concluding remarks are pointed out.

2. PRELIMINARIES

2.1. Types of Fuzzy Rule-Based Systems

There are two different kinds of FRBSs in the literature, the Mamdani and
TSK ones, depending on the expression of the consequent of the fuzzy rules
composing the FRB. While Mamdani-type fuzzy rules consider a linguistic
variable in the consequent,19,20 TSK fuzzy rules are based on representing the
consequent as a polynomial function of the inputs.21 The generic expression of
the TSK rules is the following:

If x is A and . . . and x is A then y s p ? x q ??? qp ? x q p1 1 n n 1 1 n n 0

Focusing on the other system type, the FRB is composed of a collection of
fuzzy rules with the following structure:

R : If x is A and . . . and x is A then y is Bi 1 i1 n in i

where x , . . . , x and y are the input variables and the output variable, respec-1 n
tively. Depending on the characteristics of these fuzzy rules, we can consider two
different Mamdani-type FRBSs:

v 19,20On the one hand, we have the usual descriptï e approach when x , . . . , x and1 n
y are linguistic variables that have a term set of possible values associated
presenting a real-world meaning. In this way, each A or B corresponds to ai j i
linguistic term that has associated a fuzzy set defining its meaning and this
mapping is uniform for all rules in the FRB. This FRBS has been widely used and
has obtained very good results in many different applications. Anyway, it suffers
some limitations due to the inflexibility of the concept of the linguistic variable.22

The homogeneous partitioning of the input and output spaces when the input-
output mapping varies in complexity within the space is inefficient and does not
scale to high-dimensional spaces.23 Therefore, its performance decreases when
dealing with complex problems in which small changes in the input have strong
changes associated in the output.24
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v On the other hand, in the last few years a new approach, the approximate
Mamdani-type FRBS,2,12 has been proposed for avoiding these drawbacks. It is
based on working directly with fuzzy variables in the fuzzy rules. In this case, each
fuzzy rule presents its own semantics, i.e., the variables x and y, respectively,j

take a different fuzzy set A and B as value and not a linguistic term from ai j i
global term set. Therefore, it is said that the rules present free semantics.
According to,23 the advantage of approximate representation is its expressive
power for learning rules which present their own specificity in terms of the fuzzy
sets involved in them. This is likely to be of benefit in tackling the course of
dimensionality when scaling to multi-dimensional systems. Anyway, its drawback
with respect to the descriptive FRBS is the loss of FRB readability. The approxi-
mate approach is considered in Refs. 2, 23]32.

2.2. Genetic Fuzzy Rule-Based Systems

EAs, especially GAs, have proven to be a powerful tool for automating the
definition of the FRB, since adaptive control, learning, and self-organizative
FRBSs can be considered in many cases as optimization or search processes.
Their advantages have extended the use of EAs in the development of a wide
range of approaches for designing FRBSs over the last few years. These
approaches receive the general name of GFRBSs.12,13

EAs are applied to modifyrlearn the definition of the membership function
shapes andror the composition of the fuzzy rules in the way shown in Figure 1.
Therefore, it is possible to distinguish three different groups of GFRBSs

Figure 1. Genetic fuzzy rule-based systems.
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depending on the FRB components included in the learning process:12,13,65

Ž .1 Genetic definition of the membership functions.
Ž .2 Genetic derï ation of the fuzzy rules.
Ž .3 Genetic learning of the whole FRB.

For a wider description of each family see Refs. 12 and 13 and for an
extensive bibliography see Ref. 15, Section 3.13, and Ref. 16, Section 13.
Different approaches may be found in Refs. 33]35.

Carse et al.23 divide the third family into two different subgroups depending
on the simultaneousness in the learning of both FRB components. Therefore,
they differentiate between learning them in a single process or in different
stages. We shall refer to the latter kind of systems as multi-stage GFRBSs.18

The processes obtained from MOGUL belong to this family.

2.3. The Iterative Rule Learning Approach

The main problem that has to be solved to design a GFRBS consists of
finding a suitable representation both capable of gathering the problem charac-
teristics and suitably representing the potential solutions to it.

Classically, two genetic learning approaches, adopted from the field of
genetic-based machine learning systems, have been used: the Michigan36,37 and
Pittsburgh38 approaches. In the Michigan approach, the chromosomes are indi-
vidual fuzzy rules and the FRB is represented by the entire population. The
collection of fuzzy rules is adapted over time using some genetic operators
applied at the level of the individual rule. This evolution is guided by a credit
assignment system that evaluates the adaption of each single fuzzy rule. On the
other hand, in the Pittsburgh approach, each chromosome represents an entire
FRB and the evolution is developed by means of genetic operators applied at
the level of fuzzy rule sets. The fitness function evaluates the accuracy of the
complete FRBS encoded in the chromosome.

In the last few years, the IRL approach proposed in Ref. 39 has been used
by some authors to obtain several GFRBSs following a new learning model.18 In
this latter model, as in the Michigan one, each chromosome in the population
represents a single fuzzy rule, but only the best individual is considered to form
part of the final FRB. Therefore, in this approach the EA provides a partial
solution to the problem of learning, and, contrary to both previous ones, it is run
several times to obtain the complete FRB. This is put into effect by including it
in an iterative scheme based on obtaining the best current fuzzy rule for the
system, incorporating this rule into the final FRB, and penalizing it before
repeating the process. It ends up when the FRB is able to adequately represent
the system.

This scheme is usually employed in GFRBSs based on inductive learning, in
which the penalization of the fuzzy rules yet generated is made by removing
from the training data set all those examples that are still covered by the FRB
obtained until that time. On the other hand, as the learning processes using it
do not envisage any relationship between the fuzzy rules generated, it is usual to



´CORDON ET AL.1128

employ postprocessing to simplify andror adjust the FRB obtained, thereby
forming a multi-stage GFRBS.

A key characteristic of the IRL is that it substantially reduces the search
space, because in each iteration only one fuzzy rule is searched. This allows us
to obtain good solutions in GFRBSs for off-line learning problems.

A more complete description of the IRL and a short comparison of the
three genetic learning approaches is to be found in Refs. 65 and 18.

2.4. The Cooperation vs. Competition Problem

One of the most interesting features of an FRBS is the interpolative
reasoning it develops. This characteristic plays a key role in the high perfor-
mance of FRBSs and is a consequence of the cooperation among the fuzzy rules
composing the FRB. As is known, the output obtained from an FRBS is not
usually due to a single fuzzy rule but to the cooperative action of several fuzzy
rules that have been fired, because they match the input to the system to some
degree.

On the other hand, the main feature of an EA is the competition between
members of the population representing possible solutions to the problem being
solved. In this case, this characteristic is due to the mechanisms of natural
selection on which the EA is based.

Therefore, since a GFRBS combines both features, it works by inducing
competition to achië e the best possible cooperation. This seems to be a very
interesting way to solve the problem of designing an FRBS, because the
different members of the population compete between themselves to provide a
final solution presenting the best cooperation among the fuzzy rules composing
it. The problem is to obtain the best possible way to put this operation mode
into effect. This is referred to as CCP.17

The difficulty of solving the problem introduced depends directly on the
genetic learning approach followed by the GFRBS. Multi-stage GFRBSs based
on the IRL approach try to properly solve the CCP at the same time as reducing
the search space by encoding a single fuzzy rule in each chromosome.18 To put
this into effect, these processes divide the genetic learning process into, at least,
two stages. Therefore, the CCP is solved in two steps acting on two different
levels:

v The genetic generation stage forces competition between fuzzy rules, as the genetic
learning processes based on the Michigan approach, to obtain an FRB composed
of the best possible fuzzy rules. The cooperation among them is only smoothly
addressed by means of the rule penalization criterion.

v The postprocessing stage forces cooperation between the fuzzy rules generated in the
pre¨ious stage by refining or eliminating the redundant or unnecessary fuzzy rules
from the previously generated fuzzy rule set in order to obtain the best possible
FRB.

As can be observed, the iterative operation mode followed by the genetic
generation stage in multi-stage GFRBSs based on the IRL induces the forma-
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tion of niches40 and substantially reduces the size of the search space. The
postprocessing stage deals with a simple search space as well because it only
works on the FRB obtained from the previous stage.

An analysis on the way in which the CCP is solved by the other two genetic
learning approaches may be found in Refs. 65 and 18.

3. MOGUL: AN EVOLUTIONARY PARADIGM TO DESIGN
FUZZY RULE-BASED SYSTEMS

In this Section, we present the design guidelines that constitute the evolu-
tionary methodology proposed, which were briefly introduced in Ref. 41. From a
general point of view, MOGUL is based on working with the IRL approach and
on some particular aspects considered in order to improve the accuracy of the
final FRBS designed from the GFRBSs obtained following these assumptions.
MOGUL may be used to generate different types of FRBSs: descriptive and
approximate Mamdani-type, and TSK-type ones, to be more precise. This will
allow the FRBS designer to obtain the most appropriate solution to the problem
being solved.

In the following subsections, we shall briefly analyze the guidelines that
constitute MOGUL. By taking into account these guidelines, the designer may
obtain different GFRBSs with the same generic structure in different stages but
composed of different individual processes. The nature of these specific pro-
cesses may be defined by him depending on his needs and on the type of FRBS
being designed, but the methodology ensures that accurate FRBSs are obtained
from the resulting GFRBSs whenever each individual process satisfies the
conditions that it imposes for each stage.

3.1. Properties Required for the Generated Fuzzy Rule Base

Several important statistical properties have to be verified by the FRB in
order to obtain an FRBS presenting good behavior.19,20 We will consider the
satisfaction of two of them, completeness and consistency, in the GFRBSs
obtained from MOGUL. Since we consider an inductive approach to building
GFRBSs, both properties will be based on the existence of a training data set,
E , composed of p numerical input-output problem variable pairs. Thesep
examples will present the following structure:

e s ex l , . . . , ex l , ey l , l s 1, . . . , pŽ .l 1 n

A brief description of the said properties can be found below. For a wider
description, refer to Ref. 24.

3.1.1. Completeness of a Fuzzy Rule Base

It is clear that an FRBS should always be able to infer a proper output for
every possible system input. This property may be called t-completeness in the
field of inductive learning and it may be mathematically formulated using a real
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value t by means of the following expression:31

C e s R e G t , l s 1, . . . , pŽ . Ž .DR l i l
is1 . . . T

l lR e s ) A ex , B eyŽ . Ž . Ž .Ž .i l i i

A ex l s ) A ex l , . . . , A ex lŽ . Ž . Ž .Ž .i i1 1 in n

Ž .where ) is a t-norm, and R e is the compatibility degree between the rule Ri l i
and the example e .l

Given an FRB composed of T fuzzy rules R , the co¨ering ¨alue of ani
example e g E is defined asl p

T

CV e s R eŽ . Ž .ÝR l i l
is1

and we require the following condition

CV e G e , l s 1, . . . , pŽ .R l

A good FRB must satisfy both the conditions presented above, to verify the
t-completeness property and to achieve an appropriate final co¨ering ¨alue.

3.1.2. Consistency of a Fuzzy Rule Base

A generic set of If]Then rules is consistent if it does not contain contradic-
tions. There is a need to relax the consistency property for considering it in
FRBs. We do this by means of the positï e and negatï e example concepts.31,42

An example is considered positive for a fuzzy rule when it matches with its
antecedent and consequent, and it will be considered a negative example when it
matches with its antecedent and not with its consequent.

qŽ . � Ž . 4 yŽ . � Ž .Let E R s e g E rR e G 0 and E R s e g E rR e s 0 andi l p i l i l p i l
Ž l. 4A ex ) 0 be respectively the positive and negative example set for the rulei

q < qŽ . < y < yŽ . < w xR . Let n s E R and n s E R . Given a parameter k g 0, 1 , it isi R i R ii i

said that 41

R is k y consistent when ny F k ? nq
i R Ri i

Hence, the way to incorporate the satisfaction of this property in the
designed GFRBSs is to encourage the generation of k-consistent rules. Those
rules not verifying this property will be penalized so as not to allow them to be
in the FRB finally generated.

3.2. Guidelines to Solve the Cooperation vs. Competition Problem

In MOGUL, the multistage GFRBS usual way of solving the CCP in two
stages,18,42 introduced in the previous section, will be extended by considering
some design criteria collected in several groups according to the learning stage
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in which they are considered. We will introduce these criteria in the following
subsections.

3.2.1. MOGUL Design Tasks Associated to the Generation Stage

To improve the behavior of the FRBS designed from the GFRBS, MOGUL
will consider the following aspects in this stage:

v The designer is allowed to build the generation stage by using different kinds of
algorithms and not only a GA as in the previous existing approaches following the
IRL approach.31,39,42 It is possible to employ a non-evolutionary inductive algo-

Ž .10rithm or an Evolution Strategy ES instead of the usual GA. The operation
mode is still the same but the difference is the speed of the generation process,
which is higher in the latter cases.

v 18,31,42The usual operation mode of multi-stage GFRBSs does not consider the
cooperation between the fuzzy rules generated in the first stage. Each new fuzzy
rule is generated without taking into account how it will cooperate with the
previous ones obtained. Hence, the newly generated fuzzy rule may interact
insufficiently or excessively with the previous ones, making the FRBS obtained
perform badly. We will improve the fuzzy rule generation process when designing
approximate Mamdani-type or TSK-type FRBSs.
In the former case, we will consider a phenotypic niching criterion40 which will
allow us to generate the best possible fuzzy rule in each iteration taking into
account both the goodness of this rule and the goodness of its cooperation with
the previous ones generated. In the latter one, a local error measure will be
considered which will promote the generation of fuzzy rules whose consequents
will adjust better to the examples best covered by their antecedents. As may be
seen, both criteria allow us to deal with part of the cooperation problem in the first
stage.

3.2.2. MOGUL Design Tasks Associated to the Postprocessing Stage

Usually, the goal of the second learning stage is to improve the cooperation
level of the fuzzy rules generated in the previous one by refining them or by
removing the redundant or unnecessary ones. With the aim of improving the
accuracy of the FRBSs designed, in MOGUL we will tackle both tasks: the
simplification of the FRB and the refining of the fuzzy rules composing it, by
adjusting their membership functions.

To do so, the postprocessing stage will be broken down into two different
stages: the genetic simplification process and the e¨olutionary tuning process, as in
the GFRBS proposed in Ref. 31. Therefore, the CCP is again divided into
smaller subproblems to be solved better. Moreover, other design aspects are
considered:

v The postprocessing stage will present two important characteristics. On the one
hand, it will be designed by means of a GA based on the Pittsburgh learning
approach, the one solving the CCP best, but significatively reducing the solution
space by working only over the FRB generated in the first stage, i.e., not
modifying the membership function definitions. In this way, it will simplify the RB
obtained until now by removing the redundant or unnecessary fuzzy rules not
cooperating adequately with the others. This operation mode will allow us to
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obtain the best possible FRB composed of the best combination of the fuzzy rules
generated in the first stage.
On the other hand, the other existing type of niching, the genotypic one,40 will be
considered to obtain not only a single FRB as output from the process but
different ones presenting the best possible behavior. Due to this, we will refer to
this second stage as the multisimplification process. A similar idea has been used
in Ref. 43.

v The third stage will be composed of an EA that will again deal with a smaller
search space because it will work only with the membership functions and not
with the fuzzy rule structure.
In this way, the evolutionary tuning process will be applied over the different
FRB definitions generated in the previous process, and the most accurate will be
the one given as the output of the multi-stage GFRBS. Therefore, an FRB not
presenting the best behavior after the second stage, may be the best one after the
third one due to the fact that the new membership function shapes make its rules
cooperate in a better way.
Working in this way we directly solve the problem presented in Ref. 43 to choose
the best fuzzy model from the ones generated.

3.2.3. MOGUL Design Tasks Associated to the Composition of the
E¨olutionary Algorithms Considered

Finally, focusing on the EA search, we need to make use of suitable
techniques to develop an accurate trek on the search spaces tackled in each
stage to obtain the best possible solutions. Several factors have to be considered
in order to reduce the search space complexity and to perform an adequate
exploration and exploitation over it to allow the search process to be effective. A
good analysis of these factors in GFRBS design is presented in Refs. 13 and 44.

ŽAmongst the techniques usually employed in genetic learning processes as well
.as in other genetic processes we will consider the following ones:

v Choosing an adequate representation of the indï iduals: It will depend on the
learning stage and on the information encoded in the individual. In all cases, we
want it to encode as much information as possible in individuals with a length as
short as possible. In MOGUL, we will recommend the use of integer coding when
representing linguistic labels, real coding, when representing fuzzy membership

Žfunctions, and we shall propose a specific coding scheme, angular coding see
.Section 4.1.4 , to code the TSK rule consequent parameters. On the other hand,

we will combine different schemes when the individual encodes different types of
information.

v Designing specific operators to perform a robust trek on the search space: We will
consider evolutionary operators specifically designed according to the coding
scheme chosen, with a suitable exploration-exploitation rate. In this way, we will
pay special attention to real-coded genetic operators11,45,46 and we will propose

Ž .the inclusion of an 1 q 1 -ES as another genetic operator to promote the
Žexploitation of the best solutions found in each generation see Refs. 25, 27, 28,

. 48,49and 47 , following the assumptions of the so-called genetic local search.
v Designing an adequate fitness function: It will depend on the learning stage and we

will promote the use of multicriteria fitness functions, capable of adequately
guiding the search over the space. In the generation stage, different frequentistic
example covering criteria will be considered, allowing the generated FRB to
verify the properties mentioned in Section 3.1. In the remaining stages, these kind
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of criteria will be combined with global error measures to improve the coopera-
tion between the rules, maintaining the satisfaction of the properties.
When it is not possible to work with frequentistic criteria, i.e., when designing

Ž .TSK FRBSs due to the non-fuzzy nature of the rule consequent , error measures
will be used. In the first stage, a local error measure will be considered to deal
with part of the cooperation problem, at the same time as inducing competition,
while in the remaining ones the use of global error measures will allow us to
improve the FRB cooperation level.

v Deciding the way in which the a¨ailable knowledge will be used in the learning
process: We will consider two different ways of incorporating this knowledge into
the learning process:

} Incorporating partial definitions obtained from expert knowledge into the
Ž .learning process see Section 3.4 .

} Using the available knowledge to generate the initial population of the EAs.
In the first stage, the example set will be used directly to generate the initial
population. In the remaining ones, the definitions obtained in the previous
process will be encoded on one of the initial population individuals. Finally, in
the evolutionary tuning process, the initial definitions of the fuzzy partitions
will be used to define the intervals of adjustment of the membership function
parameters.

v Defining the niche scheme: In MOGUL, two different possibilities are considered
for this aspect. On the one hand, we use a phenotypic sharing scheme to deal
with part of the cooperation problem in the generation stage when designing
approximate Mamdani-type FRBSs. On the other hand, we will consider the
other existing niche scheme, the genotypic one, to generate different FRB

Ž .definitions in the multisimplification stage see Section 5 .

3.3. Structure of the Multistage Genetic Fuzzy Rule-Based
System Obtained

In view of the ideas mentioned in the previous subsection, the generic
structure of the multistage GFRBSs obtained from MOGUL will be composed
of the following three stages:

Ž .1 A fuzzy rule generation process that allows us to generate a set of fuzzy rules of
any kind representing the knowledge existing in the training data set in a
suitable form. In all cases, it will present two components: a fuzzy rule generating

Žmethod, whose composition depends on the type of FRBS being designed see
.Section 4.1 , and an iteratï e co¨ering method of the example set. The latter puts

into effect the usual way genetic learning processes work based on the IRL
approach. It penalizes each rule generated by the fuzzy rule generating method
by considering its covering over the examples in the training set and removes
the ones already covered from it.

Ž .2 A genetic multisimplification process for selecting rules, in the case in which it is
necessary to simplify the FRB obtained in the previous process. This second
process is based on a binary coded GA with a genotypic sharing function and a
fitness function based on two criteria, a global error measure and a criterion
penalizing the non-satisfaction of the t-completeness property. This process will
obtain different simplified FRB definitions thanks to the genotypic niching
scheme.
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Ž .3 An e¨olutionary tuning process, based on any kind of real coded EA and on a
fitness function like the one used in the previous process. It will give the final
FRB as output by adjusting the membership functions in each possible FRB
obtained from the genetic multisimplification process. The type of tuning
performed will depend on the nature of the FRBS being designed. Therefore,
when generating a descriptive FRB, a global tuning of the fuzzy partition
associated to each linguistic variable will be performed, but when working with
an approximate approach, the membership functions involved in each fuzzy rule
will be adjusted individually. On the other hand, in the case of a TSK FRB, the
antecedent part will be adjusted in the same way as in the descriptive approach,
and the preliminary definition of the consequent parameters obtained in the
first stage will be refined as well. The most accurate FRB obtained in this stage
will constitute the final output of the whole learning process.

Although this will be the generic structure that will usually have the
GFRBSs obtained from MOGUL, it is possible that they will only be composed
of two stages: a fuzzy rule generation process and a tuning process. This
alternative structure will be used in the case in which the FRB generated in the
first stage does not need to be simplified due to the fact that this process has
been able to obtain an adequate cooperation level, even working at the level of
individual rules following the IRL approach. This will ensure that the tuning
process will only be employed to refine the cooperation between the rules
generated in the first stage and that we do not finally obtain different definitions
of the FRB from the GFRBS. An example of this may be found in the TSK
GFRBS proposed in Ref. 47.

3.4. Use of the Available Knowledge in the Learning Process

One of the main characteristics of the FRBSs is that they are able to
incorporate two different types of information, expert and numerical, into the
design process.50 Therefore, using MOGUL we have to be able to incorporate
both kinds of information into the GFRBS obtained, in the case in which they
are both available, as well as generating the FRB when we only have a training
data set describing the problem and not any kind of expert information.

Hence, the GFRBSs obtained from MOGUL may work in different ways,
depending on the kind and on the amount of information available. We are
going to describe the different existing possibilities beginning with the case in
which less information is available, only an example set, and finishing with the
case in which we have enough expert knowledge to generate a whole preliminary
FRB definition from it:

Ž .1 Example set: The GFRBS is totally applied. To do so, in the case in which a
descriptive Mamdani-type or a TSK-type FRBS is being designed, the input and
output spaces, in the first case, and the input one, in the second, are first
uniformly fuzzy partitioned into a number of linguistic terms.

Ž . Ž .2 Expert fuzzy partitions linguistic terms, with their associated membership functions
and example set: When initial fuzzy partitions are provided for all the linguistic
variables of the system, the overall learning process is applied, as in the previous
case, but the expert definitions are used instead of the uniformly obtained ones.
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Ž . Ž .3 Partial FRB and example set either with or without expert fuzzy partitions : First,
the GFRBS incorporates the expert fuzzy rules to the FRB to be generated in

Žthe first stage, independently of its kind in the case in which a TSK FRBS is
considered, the linguistic rule is transformed into a TSK one by taking the

. 50modal point of the consequent fuzzy set . Then, this partial FRB is completed
Žby blending it with the information obtained from the generation process fuzzy

.rules learned from input-output data , then applying the genetic multisimplifi-
cation process to obtain different simplified FRB definitions. Finally, the evolu-
tionary tuning process is applied to adjust the membership functions, obtaining
the final FRB.

Ž .4 Preliminary FRB and example set: When a complete FRB has been derived from
an expert, the third component, the evolutionary tuning process, may be used
individually to obtain a more accurate FRBS by adjusting the previous definition
of the membership functions.

4. THE FUZZY RULE GENERATION PROCESS

As we have seen in Section 3.3, the fuzzy rule generation process is
composed of the fuzzy rule generating method and of the iteratï e co¨ering
method. We will devote the following two subsections to go deeper into the
analysis of the composition of both methods.

4.1. The Fuzzy Rule Generating Method

This first method obtains the best fuzzy rule at each moment according to
the training data set state. As mentioned, its composition will depend on the
type of fuzzy rule considered. The following possibilities exist:

v Design of descriptï e Mamdani-type FRBSs: In this case, the first stage works only
with the linguistic labels and not with the membership function shapes. There-
fore, the size of the search space is not very large, and we propose to use a
nonevolutionary inductive algorithm instead of an EA. This algorithm will be
based on a linguistic rule selection function composed of a number of example
covering frequentistic criteria, some of which will be presented in the next
subsection. A fuzzy rule generating method of this kind is to be found in Refs. 24
and 51.

v Design of approximate Mamdani-type FRBSs: When working with this type of rules,
the generating method has to be able to generate the membership function
shapes. Due to this, the search space size is larger than the previous one, and so
the use of an EA is recommended. The fitness function guiding the search will be
based on combining some of the said frequentistic criteria and the phenotypic
niche criterion commented in Section 3.2.1, which will allow us to deal with part
of the cooperation problem in this stage.
Two different possibilities may be distinguished when generating an approximate
Mamdani-type FRB: the constrained and unconstrained ones.27,28 We say that the
fuzzy rules present a constrained free semantic when they are generated with a

Ž .free semantic i.e., they are approximate Mamdani-type fuzzy rules but based on
an initial domain fuzzy partition that determines the intervals in which each point
defining the membership functions may take on a value. On the other hand, when
the only restriction imposed on the membership function locations and shapes is
lying within a specific interval, the fuzzy rules present an unconstrained free
semantic. The most extreme case is when the interval associated to each fuzzy set
corresponds to the whole domain of the system variable.
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In Refs. 25, 27, and 28 a GFRBS is to be found obtained from MOGUL to
generate constrained approximate Mamdani-type FRBSs, whose generating
method is implemented by using a genetic local search algorithm hybridizing a

Ž .GA and an 1 q 1 -ES. On the other hand, another GFRBS generating uncon-
strained approximate FRBSs, with a generating method implemented by means

Ž .of an 1 q 1 -ES, may be found in Refs. 24, 26, 28, and 31. The latter will be the
multistage GFRBS introduced in this paper as an example of the application of
MOGUL.

v Design of TSK FRBSs: Finally, in the case in which the FRBS to be designed is of
the TSK type and the antecedent part of the rules uses linguistic variables, we are
in an intermediate situation, due to the fact that the generating method does not
have to generate the membership function shapes but rather has to obtain a
preliminary definition of the TSK rule consequent parameters p . Therefore,i
following MOGUL guidelines, we use an EA combining two different informa-
tion levels in each individual: representing the antecedent part by means of an

Ž .integer coding and using angular coding see subsection 4.1.4 to represent the
consequent. In this case, the fitness function is only based on one criterion, a
local error measure, capable of both generating accurate TSK rules and dealing
with part of the cooperation problem in this first stage.
An example of a GFRBS of this kind obtained from MOGUL is to be found in
Refs. 47 and 52. In that process, the generating method is implemented by means

Ž .of a m, l -ES.

In the next three subsections we shall present some of the criteria that may
be used to design the different fitness functions mentioned. The fourth subsec-
tion will be devoted to briefly introducing the angular coding employed in the
latter design case.

4.1.1. The Example Co¨ering Frequentistic Criteria Considered for
Generating Linguistic Rules

The example covering frequentistic criteria considered for designing a
linguistic rule multicriteria fitness function have to give the better values to the
rules that are promising to form part of an accurate FRB, verifying the
t-completeness, covering and consistency properties. Amongst others, we may
consider the following ones:

Ž . 31a High frequency ¨alue: The frequency of a fuzzy rule, R , through the set ofi
examples, E , is defined asp

Ý p R eŽ .ls1 i l
C R sŽ .E ip p

Ž . 31b High a¨erage co¨ering degree o¨er positï e examples: The set of positive exam-
ples to R with a compatibility degree greater than or equal to v is defined asi

Eq R s e g E rR e G vŽ .Ž . � 4v i l p i l

qŽ . < qŽ . < qŽ .with n R being equal to E R . The a¨erage co¨ering degree on E Rv i v i v i
can be defined as

G R s R e rnq RŽ .Ž . Ž .Ýv i i l v i
qŽ .e gE Rl v i
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Ž . 51c Penalization associated to the non satisfaction of the k-consistency property: This
criterion penalizes those fuzzy rules with many negative examples with respect
to the number of positive examples with a compatibility degree greater than or
equal to v. In this way, it penalizes the non satisfaction of the k-consistency
property. The penalty function on the negatï e examples set of the rule R will bei

1, if ny F k ? nq RŽ .¡ R v ii

y ~ 1g R sŽ .n i , otherwisey q¢n y kn R q exp 1Ž .Ž .R v ii

It has to be noted that the negative example set is always computed over the
whole training data set E .p

4.1.2. The Low Niche Interaction Criterion Considered to Generate
Approximate Mamdani-type Fuzzy Rules

As mentioned earlier, the aim of this criterion is to deal with part of the
cooperation problem in the generation process. Since the fitness function used
to design approximate Mamdani-type FRBSs is initially based on some example

Žcovering frequentistic criteria like the ones presented in the previous subsec-
.tion and in this case the generating method has to generate the membership

function shapes, the rule competition induced by this method makes the
supports of the fuzzy sets wider to cover more examples, thus having a higher
fitness value. Hence, the approximate fuzzy rules in the FRB generated usually
interacts excessively and do not cooperate in an adequate way.

To solve this problem in the approximate GFRBSs obtained from MOGUL,
we include cooperation in the generating method by inducing a new kind of
niches in the search space. In this way, if the fuzzy rule being generated at this
time interacts with any or some of the previously obtained ones, the former is
forced to share its payoff with the latter ones. The consequence of this
operation mode is that the fuzzy sets generated will present a support narrower
than in the previous case, and thus the fuzzy rules in the FRB obtained will
cooperate better.

The criterion to do so will be based on a phenotypic sharing scheme, the
Žmost adequate one to deal with membership function shapes see Refs. 24 and

. Ž .28 . Its formulation will be the following: with N s N x, N y being the centersi i i
Ž . Žof the rules niches determined until now i s 1, . . . , d, where d is the number

.of generating process runs performed , and C being the individual encoding the
Ž .fuzzy rule being adapted, R , the low niche interaction rate LNIR penalizes thei

fitness associated to C as follows:

LNIR R s 1 y NIR RŽ . Ž .i i

� 4NIR R s Max hŽ .i i i

h s ) A N x , B N y , i s 1, . . . , dŽ . Ž .Ž .i i i

A N x s ) A N x , . . . , A N xŽ . Ž . Ž .Ž .i 1 i 1 n i n

C ; R : If x is A and . . . and x is A then y is Bi 1 i n n
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Ž .Hence LNIR C penalizes the excessive interaction between the fuzzy
w xrules, which leads to bad cooperation between them. It is defined in 0, 1 and

Ž .gives the maximum value no penalization when R does not interact with anyi
Ž .of the rules generated until now. The minimum value maximum penalization is

obtained when this rule is equal to one of those generated previously.

4.1.3. The Local Error Measure Considered to Generate TSK Fuzzy Rules

With the aim of dealing with part of the cooperation problem in the first
learning stage when designing TSK FRBSs with MOGUL, we recommend using
a local error measure to ensure that the fuzzy rules generated are better
adjusted to the examples matching them to a higher degree. Working in this
way, the adjustment of the examples matching them to a lesser degree will be
done by means of the combinated action of the different rules in the FRB.

Therefore, the fitness function may be designed by using this single crite-
rion, due to the fact that it allows us to satisfy both goals to be achieved in this
stage: generating TSK fuzzy rules with a good individual behavior and with a
good cooperation level between them.

As an example of this criterion, we may use the one proposed in:53

2l l lh ? ey y S exŽ .Ž .Ý
e gEl

where E is the set of input-output data pairs e g E located in the fuzzy inputl p
l Ž Ž . Ž ..subspace defined by the rule antecedent, h s T A ex , . . . , A ex is the1 1 n n

matching between the antecedent part of the rule and the input part of the
l Ž . Ž l.current data pair ex T is a t-norm , and S ex is the output provided by

the TSK rule when it receives ex l as input.

4.1.4. Angular Coding

There is a problem when designing TSK FRBSs using EAs: the intervals in
which the TSK rule consequent parameters p are defined are not known andi
this information is usually necessary to define the coding scheme of the possible
solutions and to perform evolution on them using the evolutionary operators.

In MOGUL, we propose a new coding scheme, called angular coding, which
was first presented in Refs. 47 and 52, based on considering the geometrical
properties of the TSK rule consequents and on encoding the values of the angles
instead of the tangent values for each TSK rule consequent parameter by using
the mapping

p p
C : R ª y ,ž /2 2

C x s arctan xŽ . Ž .
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This allows us to have all the parameters p lying in the same knowni
p pŽ .interval, y , , and to represent the whole space of possible solutions, which2 2

is not done in other TSK FRBS design methods.

4.2. The Iterative Covering Method

The covering method is developed as an iterative process that allows us to
obtain a set of fuzzy rules covering the example set. In each iteration, it runs the
generating method, obtaining the best fuzzy rule according to the current state
of the training set, considers the relative covering value this rule creates over it,
and removes from it the examples with a covering value greater than e . The
covering method is performed as follows:

Ž .1 Initialization:
Ž .a Introduce the ¨alues of e and the other parameters considered in the different

Ž .criteria used in the fitness functions k, v, . . . .
Ž .b If linguistic rules are a¨ailable from expert knowledge:

Ž . gi Introduce those rules into the final rule set B .
Ž . w xii Set the initial ¨alue of the example co¨ering degree CV l , l s 1, . . . , p,

considering the co¨ering that the rules existing in B make o¨er theg
example set E .p

Ž . w xiii Remove those examples with CV l G e from E .p
Ž .c Otherwise:

Ž . gi Initialize B to empty.
Ž . w xii Set the example co¨ering degree CV l ¤ 0, l s 1, . . . , p.

Ž .2 O¨er the set of examples E , apply the generating method, obtaining as output thep
best fuzzy rule R according to the current state of E .r p

Ž . g3 Introduce R in B .r
Ž .4 For e¨ery e g E dol p

Ž . w x w x Ž .a CV l ¤ CV l q R e ,r l
Ž . w xb If CV l G e then remo¨e it from E .p

Ž .5 If E s B then Stop else return to Step 2.p

5. THE GENETIC MULTISIMPLIFICATION PROCESS

As mentioned earlier, in this process we follow the idea of obtaining
different simplified FRBs from the fuzzy rule set generated in the previous stage
presenting the best possible cooperation between the fuzzy rules composing
them. The Sequential Niche Technique54 is used to induce niches in this GFRBS
stage, with the genetic simplification process proposed in Ref. 31 being the basic
optimization technique iterated in each run of the multisimplification process.
The following subsections introduce the basic simplification algorithm and the
particular aspects of the multisimplification one, respectively.

5.1. The Basic Genetic Simplification Process

The basic genetic simplification process was first proposed in Ref. 31. It is
based on a binary coded GA, in which the selection of the individuals is
performed using the stochastic universal sampling procedure together with an
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elitist selection scheme, and the generation of the offspring population is put
Žinto effect by using the classical binary multipoint crossover performed at two

.points and uniform mutation operators.
The coding scheme generates fixed-length chromosomes. Considering the

rules contained in the rule set B g derived from the previous step counted from
Ž .1 to m, an m-bit string C s c , . . . , c represents a subset of candidate rules to1 m

form the FRB finally obtained as this stage output, B s, such that,

If c s 1 then R g B s else R f B s
i i i

Following MOGUL assumptions, the initial population is generated by
introducing a chromosome representing the complete previously obtained rule
set B g, i.e., with all c s 1. The remaining chromosomes are selected at random.i

Ž .As regards the fitness function, F C , it is based on two different criteria:j

v On the one hand, we have a global error measure that determines the accuracy of
the FRBS encoded in the chromosome. We usually work with the mean square

Ž .error SE , although other measures may be used. SE over a training data set,
E , is represented by the following expression:TDS

1 2l lE C s ey y S exŽ .Ž . Ž .Ýj < <2 Ep e gEl p

Ž l.where S ex is the output value obtained from the FRBS using the FRB coded in
Ž . l Ž l l . lC , R C , when the input variable values are ex s ex , . . . , ex , and ey is thej j 1 n

known desired value.
v On the other hand, since there is a need to keep the t-completeness property

considered in the previous stage, we shall ensure this condition by forcing every
example contained in the training set to be covered by the encoded FRB to a
degree greater than or equal to t ,

C e s R e G t , ;e g E and R g R CŽ . Ž . Ž .DRŽC . l j l l p j jj
js1 . . . T

where t is the minimal training set completeness degree accepted in the simplifi-
cation process. Usually, t is less than or equal to v, the compatibility degree
used in the generation process.

Ž .Therefore, we define a training set completeness degree of R C over the set ofj
examples E asp

TSCD R C , E s C eŽ .Ž .Ž . Fj p RŽC . lj
e gEl p

The final expression of the fitness function is:

E C , if TSCD R C , E G t ,Ž . Ž .Ž .j j pF C sŽ .j ½ `, otherwise
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5.2. The Genetic Multisimplification Process

In order to induce niching in the sequential niche algorithm, there is a need
to define any kind of distance metric which, given two individuals, returns a
value of how close they are.54 We use a genotypic sharing due to the fact that the
metric considered is the Hamming distance measured on the binary coding

Ž . Ž .space. With A s a , . . . , a and B s b , . . . , b being two individuals, it is1 m 1 m
defined as follows:

m

H A , B s a ? bŽ . Ý i i
is1

Making use of this metric, the modified fitness function guiding the search
on the multisimplification process is based on modifying the value associated to
an individual by the basic algorithm fitness function, multiplying it by a derating
function penalizing the closeness of this individual to the previously obtained
solutions. Hence, the modified fitness function used by the multisimplification
process is the following:

F9 C s F C ? G C , SŽ . Ž . Ž .j j j

where F is the basic genetic simplification process fitness function, S s
� 4s , . . . , s is the set containing the k solutions yet found, and G is a kind of1 k
derating function. We consider the following, taking into account the fact that the
problem we deal with is a minimization one:

`, if d s 0¡
bd~G C , S sŽ . 2 y , if d - r and d / 0j ž /r¢

1, if d G r

where d is the minimum value of the Hamming distance between C and thej
� Ž .4solutions s included in S, i.e., d s Min H C , s , and the penalization isi i j i

considered over the closest solution, r is the niche radius, and b is the power
Ž . Ž .factor determining how concave b ) 1 or convex b - 1 the derating curve is.

Therefore, the penalization given by the derating function takes its maximum
value when the individual C encodes one of the solutions already found. Therej
is no penalization when the C is far away from S with a value greater than orj
equal to the niche radius r.

The algorithm of the genetic multisimplification process is shown below:

Ž .1 Initialization: Equate the multisimplification modified fitness function to the basic
Ž . Ž .simplification fitness function: F9 C ¤ F C .j j

Ž .2 Run the basic genetic simplification process, using the modified fitness function,
keeping a record of the best indï idual found in the run.

Ž .3 Update the modified fitness function to gï e a depression in the region near the best
indï idual, producing a new modified fitness function.

Ž .4 If not all the simplified FRBs desired ha¨e been obtained, return to step 2.
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Hence, the number of runs of the sequential algorithm performed is the
number of solutions desired to obtain. We allow the FRBS designer to decide
this number as well as the values of parameters r and b.

6. THE EVOLUTIONARY TUNING PROCESS

Finally, as regards the third learning stage, MOGUL presents different
design aspects with respect to the representation scheme, the adjustment of
membership functions and TSK consequent parameters, and to the composition
of the fitness function. We shall analyze these aspects in the following subsec-
tions.

6.1. Representation Scheme

As shown in Section 3.3, two different types of adjustment of the initial
definitions of the membership functions depending on the nature of the FRB
are considered in MOGUL. In the case of descriptive Mamdani-type or TSK
FRBs, we shall globally tune the fuzzy partitions associated to the linguistic

Žvariables see, for example, the genetic tuning process presented in Refs. 24 and
.51 ; whilst in the case of the approximate Mamdani-type FRBs, each member-

Žship function in each fuzzy rule is individually tuned as in the case of the
.genetic tuning process presented in Ref. 30 .

In both cases, the coding scheme considered is the same, a real one, which
is the most adequate one for dealing with membership functions, and the
representation scheme is very similar. When working with linear membership
functions, each individual membership function may be represented by means of
three or four real values, depending on whether it is triangular or trapezoidal-
shaped. The individuals are obtained by joining the partial definitions of the
fuzzy sets existing in the initial fuzzy partitions, in the case of descriptive
Mamdani-type or TSK FRBSs, or in the different fuzzy rules, in the case of the
approximate ones.

On the other hand, when working with TSK FRBs, the individuals will
include a part encoding the TSK rule consequent parameters to be refined by
the EA as well. In this case, we call the process the e¨olutionary refinement
process because it does not only tune the initial definitions of the membership
functions but refines the initial definitions of the TSK rule consequent parame-
ters as well. An example may be found in Ref. 47.

6.2. Definition of the Intervals of Adjustment

In this subsection, we are going to describe how the initial membership
function definitions are considered to define the intervals of adjustment for each
parameter. It is clear that these intervals have to be well defined in order to
obtain meaningful membership functions from the evolutionary tuning process.

Ž .Therefore, given a triangular fuzzy set defined by the 3-tuple a, b, c , the
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following two different ways for defining the intervals of adjustment are consid-
ered in MOGUL:

v On the one hand, a fixed inter̈ al of adjustment, depending on the values of the
neighbor parameters, may be associated to each one:

b y a b y a
l rw xa g a , a s a y , a q

2 2

b y a c y b
l rw xb g b , b s b y , b q

2 2

c y b c y b
l rw xc g c , c s c y , c q

2 2

Figure 2 graphically shows these intervals, which remain constant during the
evolutionary tuning process.

v On the other hand, a ¨ariable inter̈ al of adjustment may be associated to each one
of the three parameters. To do so, a global interval, obtained from its initial
definition, is associated to each fuzzy set in the FRB:

b y a c y b
w xL, R s a y , c q

2 2

This one will be the only interval remaining constant during the EA run in this
second case. The intervals associated to parameters a, b and c will vary depend-
ing on the specific individual and on the current neighbor values as shown below:

w l r x w x w l r x w x w l r x w xa g a , a s L, b , b g b , b s a, c , c g c , c s b , R

Figure 3 graphically shows the initial values of these intervals.

As may be clearly observed, the second possibility provides a greater degree
of freedom in the membership function tuning, making them finally present a

w xmeaningful form in L, R . On the other hand, the first one only performs a
more local adjustment. Fixed intervals are considered in the evolutionary tuning

Figure 2. Definition of fixed intervals of adjustment.
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Figure 3. Initial definition of the variable interval of adjustment.

processes obtained from MOGUL presented in Refs. 24, 29, and 51, whereas the
variable ones in the one presented in Ref. 47.

Finally, as regards the TSK rule consequent parameters adaption, we do not
need to define any interval of adjustment, due to the use of the angular coding
mentioned in Section 4.1.4.

6.3. Fitness Function

The composition of the fitness function to be used in this third stage will
depend on the type of FRBSs being designed. If we are working with Mamdani-
type FRBSs, regardless of whether they are descriptive or approximate, the
FRBs that are to be tuned in this process verify the t-completeness property.
Therefore, there is a need to maintain the satisfaction of this property after the
evolutionary tuning process run. In this case, we will work with the same fitness
function used in the multisimplification process, based on two criteria:

EM C , if TSCD R C , E G t ,Ž . Ž .Ž .j j PF C sŽ .j ½ `, otherwise

Ž . Ž .where EM ? is a global error measure we shall again work with the SE and
ŽTSCD is the criterion penalizing the lack of the t-completeness property see

.Section 5.1 .
On the other hand, when designing TSK FRBSs, the FRBs to be refined do

not verify the completeness property, so the fitness function may only be
composed of one criterion, the global error measure:

F C s EM CŽ . Ž .j j

7. ANALYSIS OF THE MOGUL PARAMETERS

In this section, we are going to analyze the behavior that the GFRBSs
obtained from MOGUL may present depending on the possible values for the



GENETIC FUZZY RULE-BASED SYSTEMS 1145

parameters existing in them. As may be seen in the previous sections, there are
two main parameters in these GFRBSs: the parameter e g Rq, which defines
the degree to which an example has to be covered to be removed from the

Ž xtraining data set in the generation process, and the parameter t g 0, 1 , associ-
ated to the t-completeness property in the multisimplification and tuning

Žprocesses. The influence of the others for example, k and v, the parameters
associated to the k-consistency property and to the positive example set in the

.generating method is not as important, as may be drawn from the results of the
experiments performed in Ref. 51.

Both parameters, e and t , fit the number of rules that will form part of the
Ž .FRB generated and, consequently, the FRBS accuracy . Therefore, the user

may generate the FRB with the desired accuracy-complexity balance by control-
ling the values of both parameters in the following way:

v When the main design requirement is system accuracy, the value of e must be
high. This will make the obtaining of an FRBS performing well, having a big
number of rules in the FRB.

v On the other hand, when the main requirement is to obtain an FRB with
Ž .low-complexity for example, in some real-time control applications , the choice

must be the opposite, a low value for e . In this case, the FRB generated will have
less rules, but this will make the designed FRBS perform worse.

v The value of t must always be low due to the fact that this gives more freedom to
the multisimplification and tuning processes, allowing us to obtain more accurate
and simpler FRBs from MOGUL.

In Refs. 24, 25, 26, 28, and 51, different experimental results are to be
found from some multistage GFRBSs obtained from MOGUL that confirm
these assumptions in practice.

8. EXAMPLE OF APPLICATION OF MOGUL

Different multistage GFRBSs following the methodology proposed may be
found in Refs. 24]28, 31, 47, 51, 52, and 55. In this contribution, we will briefly
describe one of them which is able to generate unconstrained approximate
Mamdani-type FRBSs. The composition of this specific GFRBSs obtained from

ŽMOGUL as proposed in this contribution, is described below for a more
.complete description refer to Refs. 24 and 26 .

Ž .1 An e¨olutionary generation process composed of a fuzzy rule generating method
Ž .based on an inductive algorithm with an 1 q 1 -ES that locally tunes the fuzzy

rule membership functions, and the covering method introduced in Section 4.2.
The fitness function is composed of the three frequentistic criteria, allowing to
select the most promising rule to verify the completeness and consistency
properties, and the low niche interaction rate, a criterion to deal with the
cooperation between the fuzzy rules generated in this first stage. These four
criteria have been introduced in Section 4.1.

Ž .2 The genetic multisimplification process presented in Section 5.
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Ž .3 A genetic tuning process, based on a Real Coded GA and the same fitness
function considered in the previous stage, a combination of the SE and the
criterion penalizing the lack of the completeness property presented in Section
5.1. The approximate genetic tuning process used was presented in Ref. 29 and

Ž .is based on working with the fixed intervals of adjustment see Section 6.2 . In
this paper, the GA uses the max-min-arithmetical crossover operator45 and
Michalewicz’s nonuniform mutation.11 The selection mechanism considered is
the stochastic universal sampling procedure together with an elitist selection
scheme.

9. PRACTICAL APPLICATION OF THE PRESENTED GENETIC
FUZZY RULE-BASED SYSTEM TO A REAL-WORLD

ELECTRICAL ENGINEERING PROBLEM

In order to analyze the accuracy of MOGUL, we are going to use the
GFRBS proposed in the previous section to solve a real-world Electrical
Engineering problem consisting of obtaining a model relating the length of line
in a rural population with its characteristics.55 ] 57 We shall compare the behavior
of our multistage GFRBS in solving the problem with the one presented by
classical methods, neural networks and another multistage GFRBSs presenting
different characteristics.

To do so, first we shall introduce the application in the next subsection.
Then, the different techniques considered to solve it will be analyzed. Finally,
the results obtained will be compared.

9.1. The Electrical Engineering Problem as Considered

In Spain, electrical industries do not charge the energy bill directly to the
Žfinal user, but they share the ownership of a company called R.E.E., Red

.Electrica de Espana which receives all payments and then distributes them´ ˜
Žaccording to complex criteria amount of power generation by every company,

.number of customers, etc. .
Recently, some of these companies have asked to redistribute the mainte-

nance costs of the network. Since maintenance costs depend on the total length
Žof electrical line each company owns, and their type high, medium, urban low

.and rural low voltage it was necessary to know the exact length of every kind of
line each company was maintaining.

High and medium voltage lines can be easily measured. But low voltage line
is contained in cities and villages, and it would be very expensive to measure it.
This kind of line is usually very convoluted and, in some cases, one company
may serve more than 10 000 small centers of population. An indirect method for
determining the length of line is needed.

Therefore, there is a need to find a relationship between the population
and size of a certain area and the length of line in it, making use of some known
data, that may be employed to predict the real length of line in any given village.

We shall try to solve this problem by generating different kind of models
determining the unknown relationship. To do so, we were provided with the
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measured line length, the number of inhabitants and the mean distance from
the center of the town to the three furthest clients in a sample of 495 rural
center.56,57 Our variables are named as shown in Table I.

9.2. Analyzing Different Techniques to Solve the Problem

In order to apply classical regression methods, some hypotheses have to be
Ž .formed see Refs. 55 and 57 . By assuming them, we build two different

theoretical simplified models represented by the equations:

l̃ i k 2l̃ rR s s q k u A ; s k AŽ .i i i 1 iRi

whose parameters can be estimated by means of a least squares linear and an
Ž . Ž .exponential regression, respectively, to a set of pairs x, y s A , l rR .i i i

In the experiments performed, the parameters of the polynomial models
were fitted by Levenberg-Marquardt, while exponential and linear models were
fitted by linear least squares.

With respect to the use of Neural Networks, we have worked with the
multilayer perceptron, which was trained with the QuickPropagation algorithm.
The number of neurons in the hidden layer was chosen to minimize the test
error.

Finally, different ways of developing a fuzzy modeling of the problem
introduced are going to be compared by using several FRBS design methods
following different types of fuzzy models.

As regards the descriptive fuzzy model, the two following processes are
considered:

Ž .D1 a two-stage GFRBS based on obtaining a preliminary FRB by means of Wang
Ž . 58and Mendel’s WM method in the first stage, and tuning the definition of

the membership functions by means of the descriptive genetic tuning process
Ž .presented in Refs. 24 and 51 see Section 6 in the second one, and

Ž .D2 a two-stage GFRBS based on obtaining a preliminary FRB by means of
Thrift’s genetic learning process59 in the first stage, and refining the definition
of the membership functions by means of the same descriptive genetic tuning
process used above.

Table I. Notation considered for the problem variables.

Symbol Meaning

A Number of clients in populationi
R Radius of i population in the samplei
n Number of populations in the sample
l Line length, population ii

l̃ Estimation of li i
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On the other hand, when working with the approximate one, the following
two multistage GFRBSs are employed:

Ž .A1 a two-stage GFRBS based on obtaining a complete FRB by generating a
preliminary definition by means of the weighted counting algorithm,2 and
refining it by adjusting the membership function definitions using the approxi-

Žmate genetic tuning process proposed in Ref. 31 and used in Ref. 24 see
.Section 6 , and

Ž .A2 the three-stage unconstrained approximate GFRBS described in Section 8.

ŽThe initial fuzzy partitions considered two corresponding to the input
.variables and one associated to the output one for the four GFRBSs are

Ž .formed by fi¨e fuzzy sets as shown in Fig. 4 , and the adequate scaling factors to
translate the generic universe of discourse into the one associated with each
problem variable.

Ž .With respect to the parameter values considered for GFRBS A2 , e s 1.5,
v s 0.05, k s 0.1, and t s 0.1. On the other hand, the t-norm ) used in the
fuzzy rule generation process is the Minimum, the ES is applied until there is no

1Žimprovement in 100 generations the parameter c of the -success rule is equal5
.to 0.9 . The genetic multisimplification process generates three different FRBs

Žper run each time, the basic GA runs over 500 generations for a population of
.61 individuals , the niche radius, r, is equal to 10 percent of the number of rules

in the initial FRB, and the power factor, b , is equal to 0.5. The approximate
genetic tuning process runs over 1000 generations, the genetic population is
formed by 61 individuals, the value of Michalewicz’s non-uniform mutation
parameter b is 5.0, and the crossover and mutation rates are, respectively,

Ž .P s 0.6 and P s 0.1 this last one per individual .c m
Ž . Ž . Ž .As regards the GFRBS D1 , D2 and A1 , the parameters considered in

the second stage, the genetic tuning process, regardless of its descriptive or
approximate nature, are the same as shown above. While the WM generation
process does not consider any parameter, the values associated to Thrift’s one in
Ž . Ž .D2 and the weighted counting algorithm one in A1 , are the following:

v Thrift: Population size: 61, P s 0.6, P s 0.1 and number of generations: 1000.c m
v Weighted Counting Algorithm: a s 0.5.

Figure 4. Fuzzy partition considered in the experiments performed.
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Finally, the FRBS reasoning method used in all the processes has been the
same. We have selected the Minimum t-norm playing the role of the implication
and conjunctive operators, and the Center of Gra¨ity weighted by the matching
strategy acting as the defuzzification operator.7

9.3. Comparison Between Methods

To compare classical methods, GFRBS fuzzy modeling, and Neural Model-
ing we have randomly divided the sample into two sets comprising 396 and 99
samples. The SE values over these two sets are labeled as training and test. In
this case, we define SE as

N1 2
l̃ y lŽ .Ý i i2 ? N is1

The results obtained in the different experiments performed with the
GFRBSs considered are collected in Table II where aR stands for the number
of rules in the corresponding FRB, and SE and SE for the values obtainedt r a t st
in the SE measure computed over the training and test data sets, respectively.

Ž .In view of the results obtained, we should remark on: a the good
performance of the genetic multisimplification process since, in the second and
third iterations, it allows us to generate fuzzy models with better approximate
and predictive behavior, i.e., less value in the SE over both data sets, than the

Ž .first one obtained; and b the good performance of the genetic tuning pro-
cesses, that broadly improve the accuracy of the preliminary FRB definitions.

Once we have individually analyzed the behavior presented by the proposed
GFRBS, we are going to compare its accuracy with the remaining techniques
considered. Table III shows the results obtained by all of them in the problem.

In view of the results shown, the unconstrained approximate GFRBS
proposed in this paper has presented the best behavior. It outperforms the other
techniques considered by obtaining the best values in the SE computed over
both data sets, the training and test ones. Therefore, the unconstrained approxi-
mate FRBS generated is the model that best approximates the real system and
that presents the best generalization capabilities.

Table II. Results obtained by the multistage GFRBSs in the problem being solved.

Generation Multisimplification Tuning

GFRBS aR SE SE aR SE SE SE ECtra tst tra tst tst prue

D1 13 298446.0 282058.1 175337.9 180102.7
D2 25 218591.9 204426.8 154314.0 199551.3
A1 20 356434.3 311195.0 175887.2 180211.4
A2 31 431904.0 435649.5 19 226403.9 222550.9 148036.9 191339.5

20 227261.6 227105.6 142108.6 166578.7
16 227232.9 225789.7 136826.4 177612.3
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Table III. Results obtained in the problem being solved.

Method SE SEtra tst

Linear 287775 209656
Exponential 232743 197004
2nd order polynomial 235948 203232
3rd order polynomial 235934 202991
3 layer perceptron 2-25-1 169399 167092
D1 175337 180102
D2 154314 199551
A1 175887 180211
A2 142108 166578

We should point out that the fuzzy model obtained is more accurate to a
high degree than the neural one, which is the second best model in view of its
generalization level. Although the results do not differ too much in this

Ž .characteristic 166578 vs. 167092 , the value obtained by the constrained approx-
imate FRBS in the SE over the training data set shows a large performance

Ž .advantage for it over the neural network 142108 vs. 169399 .
Hence, we have been able to generate a model that is more accurate and

easier to interpret at the same time. This is due to the fact that, although
approximate Mamdani-type FRBs are less readable than descriptive ones, ap-
proximate FRBSs are easier to interpret than neural networks for the following
two main reasons:

v The approximate fuzzy model is locally interpretable. We are always able to know
which fuzzy rules in the FRB are fired when the system receives a specific input.

v The parameters involved in an approximate fuzzy model have a real-world
meaning understandable by a human since they define membership functions.
However, it is difficult to interpret the meaning of the neural network weights.

10. CONCLUDING REMARKS

MOGUL, an evolutionary methodology for designing FRBSs by learning
the FRB from examples, consisting of different guidelines to obtain multistage
GFRBSs based on the IRL approach has been presented. A specific evolution-
ary process to design unconstrained approximate Mamdani-type FRBSs derived
from this paradigm has been introduced and its application to a real-world
Electrical Engineering problem has been shown and compared with classical
methods, Neural Networks and other GFRBSs. The proposed GFRBS has
obtained very good results.

MOGUL will allow different users to obtain their own GFRBSs able to
deal with their specific problems. Therefore, any user may add his particular
requirements to MOGUL guidelines for designing any kind of FRBS to solve his
problem in an adequate way. To do so, the user only has to design his own
evolutionary process for each one of the GFRBS learning stages, ensuring that it
verifies MOGUL assumptions.
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The performance of MOGUL has been demonstrated in fuzzy modeling
problems until now. At the moment, we are directly applying it to fuzzy
classification problems60 and extending it to include new fuzzy reasoning meth-
ods for classification problems in the learning process,62,63 obtaining good
results. As future work, we intend to use MOGUL to design a new kind of
FRBS, the approximate TSK one, in which the antecedent part of the fuzzy rule
presents an approximate nature and the consequent part is a linear combination
of the inputs, to propose new definitions of the LNIR criterion in order to
improve the behavior of the approximate GFRBSs obtained, and to extend it to
deal with Mamdani-type fuzzy rules with a different structure, as the disjunctive
normal form where each linguistic variable may have different linguistic values

Ž .associated in the same rule see Refs. 41, 63, and 64. .

We would like to thank to Luciano Sanchez, from Oviedo University, for the´
Electrical Engineering application from Hidroelectrica del Cantabrico and for solving it´ ´
by means of classical and neural techniques.
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