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P E R S P E C T I V E

Vegetation structure derived from airborne laser scanning to 
assess species distribution and habitat suitability: The way 
forward

Abstract
Ecosystem structure, especially vertical vegetation struc-
ture, is one of the six essential biodiversity variable classes 
and is an important aspect of habitat heterogeneity, affect-
ing species distributions and diversity by providing shelter, 
foraging, and nesting sites. Point clouds from airborne 
laser scanning (ALS) can be used to derive such detailed in-
formation on vegetation structure. However, public agen-
cies usually only provide digital elevation models, which do 
not provide information on vertical vegetation structure. 
Calculating vertical structure variables from ALS point 
clouds requires extensive data processing and remote 
sensing skills that most ecologists do not have. However, 
such information on vegetation structure is extremely 
valuable for many analyses of habitat use and species dis-
tribution. We here propose 10 variables that should be 
easily accessible to researchers and stakeholders through 
national data portals. In addition, we argue for a consistent 
selection of variables and their systematic testing, which 
would allow for continuous improvement of such a list to 
keep it up-to-date with the latest evidence. This initiative 
is particularly needed not only to advance ecological and 
biodiversity research by providing valuable open datasets 
but also to guide potential users in the face of increasing 
availability of global vegetation structure products.

1  |  INTRODUC TION

Understanding the interactions of species with their environment 
is fundamental to predicting species distribution patterns and 
habitat use, and thus to improving biodiversity conservation and 

management. Early studies of species–environment relationships 
focused on measuring environmental variables at species observa-
tion points. From this, relationships were inferred that could, how-
ever, not be used to predict species occurrence at other locations 
where these explanatory variables were not available. This has 
changed markedly with the use of remote sensing data for assess-
ing and modelling the distribution of species (e.g., Cord et al., 2013). 
An example that perhaps best illustrates the contrast between 
the methods used in the past and the present to collect data on 
species–environment relationships, is the study by MacArthur and 
MacArthur  (1961), in which they demonstrated that bird species 
diversity is more affected by the physiognomy (physical structure) 
of the habitat than by plant composition. The method they used to 
measure vegetation structure was extremely laborious and virtually 
precluded the collection of such environmental data for large areas—
they looked through an aluminium tube and counted the numbers of 
visible leaves. Nowadays, laser altimetry, commonly referred to as 
Light Detection and Ranging (LiDAR), can easily collect vegetation 
structure information. Airborne laser scanning (ALS), i.e., a LiDAR 
sensor onboard an airplane, has now become the main method for 
collecting accurate terrain and vegetation structure over large areas 
(e.g., Evans et al., 2009; Melin et al., 2017; Wehr & Lohr, 1999).

Laser altimetry is an active remote sensing method that uses laser 
beams to measure distances between the sensor and a target surface 
and thus determine the positions of objects in three-dimensional 
space (Wehr & Lohr, 1999). Lasers are used for measuring distances 
due to their unique properties such as coherence and the ability to 
emit a large number of photons in a defined direction in very short 
pulses at a predefined wavelength (Shan & Toth, 2018). Commercial 
systems for general topographic and vegetation mapping usually 
work with infrared radiation (at a wavelength of approx. 1064 nm; 
Baltsavias, 1999). A typical ALS output is represented by an irreg-
ular distribution of the returns (i.e., points) in three-dimensional 
space, referred to as a point cloud. Vegetation structure can also 
be estimated using synthetic aperture radar (SAR) or digital aerial 
photogrammetry (DAP) that can be acquired with various mapping 
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platforms (drones, airborne, or spaceborne) (Bergen et al.,  2009; 
Valbuena et al., 2020). Of the possible combinations of sensors and 
platforms, using an aircraft as a LiDAR sensor carrier has, for most 
applications and habitat types, a major advantage over other meth-
ods, as it provides a continuous and dense coverage of relatively 
large study areas. This is in contrast to spaceborne laser altimeters, 
such as GEDI or ICESat-2, which provide greater coverage but sparse 
discrete measurements; further, GEDI is limited to the area between 
51.6°  N and 51.6°  S (Dubayah et al.,  2020; Marselis et al.,  2022; 
Moudrý et al., 2022). Drones and terrestrial laser scanning, on the 
other hand, provide greater detail but can only cover small areas 
(Calders et al.,  2020; Kuželka et al.,  2020; Štroner et al.,  2021). A 
key advantage of LiDAR (in comparison to DAP and SAR) is its abil-
ity to capture the terrain under the vegetation canopy (Stereńczak 
et al., 2016; Stereńczak & Kozak, 2011). LiDAR pulses can penetrate 
gaps in the vegetation canopies and register multiple returns. In veg-
etated areas, the laser beams are usually reflected by several layers 
of vegetation. The interaction of the laser beam with the canopy is 
then characterized by multiple returns from different depths in the 
vegetation. The first return usually comes from the vegetation can-
opy surface, followed by the intermediate returns from leaves and 
branches, and the last one ideally being a return from the ground. 
Ground returns are, however, not always detected—the chance of 
their recording depends on the spatial distribution of the vegeta-
tion canopy (or gaps therein), scan angle, laser beam divergence, 
and reflectivity of the surface for the wavelength of the laser beam 
(Hofton et al., 2002; Næsset et al., 2004). It is common that the laser 
beam does not reach the ground, especially in dense forests, and 
the last return may in some cases even originate from the tree can-
opy. However, for deriving high-quality terrain models and, conse-
quently, valid vegetation metrics, a certain density of ground returns 
is necessary.

Over the past two decades, the availability of ALS data has 
steadily increased due to direct investments in data acquisition by 
international, national, or regional agencies. For instance, many 
European countries make their national ALS data publicly available 
(Table 1; Melin et al., 2017). In parallel with the data availability, there 
has been considerable development in the field of available software 
(McGaughey,  2016; Meijer et al.,  2020; Roussel et al.,  2020; Silva 
et al., 2022). This has enabled the development of several LiDAR-
based applications in ecological research and contributed signifi-
cantly to improving our understanding of species–environment 
relationships (Bakx et al., 2019; Davies & Asner, 2014). The increas-
ing availability of ALS data has the potential to significantly improve 
ecological research, and in particular species distribution modelling 
(SDM) and habitat quality assessments, by providing detailed infor-
mation on vegetation structure. However, this potential is currently 
not fully exploited as the only product describing vertical vegetation 
structure, which is usually provided by national authorities, is the 
ALS point cloud (Table 1). This leads to the curious fact that although 
the datasets as such are often available, access to ecologically mean-
ingful information that can be derived from such data is practically 
denied to many (Assmann et al., 2022). Processing ALS data requires 

specialized knowledge (e.g., filtering and classifying point clouds; 
Klápště et al., 2020; Moudrý et al., 2020) and also places high re-
quirements on storage space and computing power (Vo et al., 2016). 
Besides, there is no consensus on which variables should be pro-
duced for ecological research. Here, we propose 10 variables 
(Table 2) that can be derived from ALS point clouds and that could 
be made easily available to researchers and stakeholders with lim-
ited experience with ALS point clouds—preferably in common raster 
formats via already existing data portals (Table  1). In addition, we 
advocate a consistent selection of variables and a continuous and 
systematic assessment of their relevance for ecological research in 
order to regularly update the list of such variables to reflect techno-
logical developments and user requirements.

2  |  ROLE OF VEGETATION STRUC TURE IN 
THE DISTRIBUTION OF SPECIES

Species distribution modelling is a rapidly evolving field in bioge-
ography and spatial ecology, and the need for clear concepts and 
standards for modelling has long been acknowledged and advocated 
(Araújo et al.,  2019; Austin & Van Niel,  2011; Jiménez-Valverde 
et al., 2008; Zurell, Franklin, et al., 2020). The selection of appropri-
ate explanatory variables is crucial, as the variables chosen should 
adequately represent the main factors affecting species' distribu-
tions, e.g., climate, land cover, or topography (Gábor et al.,  2022; 
Gardner et al., 2019; Moudrý et al., 2019; Santini et al., 2021) and 
should be tailored to the species ecology and habitat requirements. 
SDM encompasses two quite distinct lines of research (Ferrier 
et al., 2017). The first, ‘explanatory modelling’, aims to explain the 
relationships between a biodiversity-related response variable (such 
as the distribution of individual species) and the explanatory vari-
ables (e.g., Bazzichetto et al., 2018; Moudrý & Šímová, 2013). The 
other one is ‘predictive modelling’, which aims to predict unknown 
values of the biodiversity response variable based on pre-specified 
relationships. Predictive SDM is especially useful in supporting con-
servation decision-making, such as in selecting protected areas; 
identifying critical habitats that contain essential features for en-
dangered species conservation; or predicting the impacts of cli-
mate or land use change on biodiversity (Araújo et al., 2019; Fricker 
et al., 2021; Guisan et al., 2013; Morris et al., 2020).

Habitat heterogeneity is one of the most important factors af-
fecting species distributions and diversity. It is determined by the 
variability of environmental conditions (e.g., habitat types, spe-
cies dominance and composition, vegetation density, soil types, 
or topographic variability). According to the habitat heterogeneity 
hypothesis, more complex environments can provide more niches 
and thus increase species diversity (see reviews by Stein et al., 2014; 
Tews et al.,  2004). Here, we focus on only one aspect of habitat 
heterogeneity—vegetation structure, a fundamental physical el-
ement of habitat, which affects species by providing shelter, for-
aging, and nesting sites. The Ecosystem Vertical Profile, i.e., the 
vertical distribution of biomass in ecosystems, is one of 20 essential 
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biodiversity variables (EBVs) defined by GEO BON (Group on Earth 
Observations Biodiversity Observation Network) and belongs to the 
EBV class Ecosystem Structure (https://geobon.org/ebvs/what-are-
ebvs/). In addition, vegetation and topographic variability can gen-
erate local climatic refugia, which, play an important role in light of 
climate change (Austin & Van Niel, 2011; Kašpar et al., 2021; Macek 
et al., 2019).

Several studies have shown that ALS data can serve as use-
ful proxies for habitat heterogeneity (Bakx et al.,  2019; Burns 
et al.,  2020; Davies & Asner,  2014; Guo et al.,  2017; Lefsky 
et al.,  2002; Torresani et al.,  2020; Vierling et al.,  2008; Vogeler 
& Cohen,  2016). The pioneering studies mainly focused on in-
vestigating (i.e., demonstrating) the effectiveness of ALS-derived 

variables in describing species–environment associations 
(Bradbury et al., 2005; Broughton et al., 2006; Goetz et al., 2007; 
Hill et al., 2004; Hinsley et al., 2002). Since then, the focus of ex-
ploratory studies has shifted to assessing relationships between 
vegetation structure and the distribution of individual species (e.g., 
Farrell et al.,  2013; Graf et al.,  2009; Huber et al.,  2016; Seavy 
et al.,  2009; Sillero & Goncalves-Seco,  2014), species diversity 
(e.g., Clawges et al., 2008; Eldegard et al., 2014; Lesak et al., 2011; 
Müller et al., 2010), and rarity (Moudrý et al., 2021). Several stud-
ies explored differences in the applicability of ALS-derived vari-
ables with respect to different functional guilds (e.g., nesting, 
foraging, and habitat), showing that the importance of individual 
variables as well as the predictability of species occurrence using 

TA B L E  1  Examples of European countries or administrative areas that provide ALS data free of charge.

Country or administrative area Link to download data portal Available products

Austria https://data.bev.gv.at/ DTM, DSM

Belgium https://downl​oad.vlaan​deren.be/Produ​cten/Detai​l?id=937&title​=Digit​aal_
Hoogt​emodel_Vlaan​deren_II_DSM_raster_1_m

DTM, DSM, point cloud

https://remot​esens​ing.vlaan​deren.be/apps/openl​idar/

Denmark https://downl​oad.kortf​orsyn​ingen.dk/conte​nt/dhmpu​nktsky DTM, DSM, point cloud

England https://envir​onment.data.gov.uk/Defra​DataD​ownlo​ad/?Mode=survey DTM, DSM, point cloud

Estonia https://geopo​rtaal.maaam​et.ee/eng/Spati​al-Data/Eleva​tion-data-p308.html DTM, DSM, point cloud

Finland https://www.maanm​ittau​slait​os.fi/en/e-servi​ces/open-data-file-downl​
oad-service

DTM, point cloud

France https://geose​rvices.ign.fr/lidarhd point cloud

North-Rhine Westfalia (Germany) https://www.openg​eodata.nrw.de/produ​kte/geoba​sis/hm/3dm_l_las/ DTM, DSM, point cloud

Saxony (Germany) https://www.geoda​ten.sachs​en.de/downl​oadbe​reich​-lsc-4667.html DTM, DSM, point cloud

Thuringia (Germany) https://www.geopo​rtal-th.de/de-de/Downl​oadbe​reich​e/Downl​oad-Offen​
e-Geoda​ten-Th%C3%BCrin​gen/Downl​oad-H%C3%B6hen​daten

DTM, DSM, point cloud

Ireland https://data.gov.ie/datas​et/open-topog​raphi​c-lidar​-data DTM, DSM

Italy http://www.pcn.minam​biente.it/mattm/​en/onlin​e-the-new-proce​dure-for-the-
reque​st-of-lidar​-data-and_or-inter​ferom​etric​-ps/

DTM, DSM, point cloud

Latvia https://www.lgia.gov.lv/en/Digit​%C4%81lai​s%20vir​smas%20mod​elis point cloud

Luxembourg https://data.public.lu/fr/datas​ets/lidar​-2019-relev​e-3d-du-terri​toire​-luxem​
bourg​eois/

point cloud

Netherlands https://www.pdok.nl/ DTM, DSM, point cloud

Norway https://hoyde​data.no/Laser​Innsy​n/ DTM, DSM, point cloud

Poland https://mapy.geopo​rtal.gov.pl/imap/Imgp_2.html DTM, DSM, point cloud

Portugal https://geoca​talogo.icnf.pt/geovi​suali​zador/​agil.html point cloud

Scotland https://remot​esens​ingda​ta.gov.scot/data#/list DTM, DSM, point cloud

Slovakia https://zbgis.skgeo​desy.sk/mkzbg​is/en/teren​?pos=48.80000​0,19.53000​0,8 DTM, DSM, point cloud

Slovenia http://www.geopo​rtal.gov.si/eng/viewe​rs/ point cloud

Spain http://centr​odede​scarg​as.cnig.es/Centr​oDesc​argas/​index.jsp DTM, DSM, point cloud

Catalonia (Spain) http://www.icgc.cat/en/Downl​oads/Eleva​tions DTM, point cloud

Sweden https://www.lantm​ateri​et.se/en/ DTM, point cloud

Switzerland https://www.swiss​topo.admin.ch/en/geoda​ta/heigh​t/surfa​ce3d.html DTM, DSM, point cloud

Wales https://lle.gov.wales/​GridP​roduc​ts#data=Lidar​Compo​siteD​ataset DTM, DSM

Note: Additional information on the individual datasets, such as resolution, point density, etc. can be found in the recent technical report by 
Kakoulaki et al. (2021).
Abbreviations: ALS, airborne laser scanning; DSM, digital surface model; DTM, digital terrain model.
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TA B L E  2  List of 10 ALS metrics proposed as standard structural variables for analysing species distributions and habitat quality.

Class
Variable name 
(units) Variable description Calculation

Height Maximum 
vegetation 
height (m)

The maximum vegetation height provides information 
about the tallest vegetation, for example a tree or 
shrub. In the case of trees, height is an indicator of 
tree diameter and age, which are important factors for 
species diversity (Bae et al., 2014; Müller et al., 2010)

Highest LiDAR vegetation return in a cell 
(Hmax)

Height Mean vegetation 
height (m)

Average vegetation height in the cell. For example, well-
developed canopies would be expected to have high 
values of the mean vegetation height, while with the 
increasing representation of understorey and mid-
storey, the value will decrease (Zellweger et al., 2016)

The arithmetic mean of the height of all 
above-ground vegetation returns in a 
cell (Hmean)

Vertical 
variability

Standard deviation 
of vegetation 
height (m)

Vertical variability of the vegetation within the cell. Small 
values arise from areas with homogenous vegetation, 
while high values reflect vertically heterogeneous 
vegetation (Melin et al., 2019; Müller & Brandl, 2009; 
Vogeler et al., 2014)

The standard deviation of vegetation returns 
heights above ground (H) in a cell.

SD =

�

�

�

�

�

∑

�

H−

−

H

�2

N

Cover Canopy cover (%) The extent/percentage of the ground covered by 
vegetation. A Canopy cover value of 85 means that 
85% of returns were reflected above x meters. The 
higher the value, the denser the canopy (closed 
stands). Low values reflect open or scattered stands 
(Singh et al., 2017; Tweedy et al., 2019)

The number of returns above a given 
height cutoff (NP) divided by the total 
number of returns (NTF).

(NP/NTF) · 100

Height Height percentiles 
(m)

Heights at which a certain percentage of returns in a cell 
has been recorded, usually from 5% to 95% in steps of 
5%. It shows the vertical distribution of points. (Singh 
et al., 2017; Vaglio Laurin et al., 2016)

Cumulative height of certain percentages 
of returns

Cover Density 
proportions (%)

Vertical distribution of points (vegetation architecture); 
usually at least ten density bins are calculated 
(Eldegard et al., 2014; Lesak et al., 2011)

Fixed height bins between the minimum 
and maximum height are used for 
calculating the proportion of returns 
in a certain bin to the total number of 
returns (NT)

Vertical 
variability

Foliage height 
diversity 
(FHD) based 
on Shannon-
Wiener index

A measure of canopy layering (MacArthur & 
MacArthur, 1961). The maximum possible value 
increases with the increasing number of layers and 
the maximum value occurs when all layers have the 
same number of returns (i.e., the Shannon-Wiener 
index increases with a more even distribution of 
points over the layers). The number of used layers 
varies slightly in existing studies (Bae et al., 2014; 
Clawges et al., 2008; Weisberg et al., 2014). From the 
producer's perspective and for maintaining simplicity, 
it is reasonable to use the same bins as for the Density 
proportions

Vertical structure complexity using 
the Shannon-Wiener index (i.e., 
the proportion of returns pi in each 
vertical layer i; n is the total number 
of layers).

FHD =

∑n

i=1
pi lnpi

Cover Cover of the 
herbaceous 
layer 
(Understorey 
density) (%)

The amount of vegetation in the herbaceous/understorey 
layer. A cover value of 10 means that of all vegetation 
returns, 10% came from herbaceous vegetation (Jones 
et al., 2013; Moudrý et al., 2021)

The number of returns at the lowest 
vegetation layer (NU) divided by the 
total number of vegetation returns 
(NTV).

(NU/NTV) · 100

Cover Cover of the shrub 
layer (Mid-
storey density) 
(%)

The amount of vegetation in the shrub/mid-storey layer. A 
cover value of 25 means that of all vegetation returns, 
25% came from shrub vegetation (Jones et al., 2013; 
Moudrý et al., 2021)

The number of returns at the middle 
vegetation layer (NM) divided by the total 
number of vegetation returns (NTV).

(NM/NTV) · 100

Cover Cover of the tree 
layer (Canopy 
density) (%)

The amount of vegetation in the tree/canopy layer. A 
cover value of 65 means that of all vegetation returns, 
65% came from trees (Jones et al., 2013; Moudrý 
et al., 2021)

The number of returns at the top 
vegetation layer (NC) divided by the 
total number of vegetation returns 
(NTV).

(NC/NTV) · 100

Abbreviation: ALS, airborne laser scanning.
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vegetation structure differ between guilds (Cooper et al.,  2020; 
Goetz et al., 2007; Jones et al., 2013; Peura et al., 2016; Vogeler 
et al.,  2014; Weisberg et al.,  2014). Recently, ALS-derived vege-
tation structure data proved useful for quantifying niche overlap/
separation (Koma, Grootes, et al., 2021).

Species distribution model studies often simultaneously encom-
pass many species (Zurell, Zimmermann, et al.,  2020). Hence, the 
selection of environmental variables based on the known ecological 
requirements of individual species is often neglected and instead 
commonly available variables (that are generally considered im-
portant for modelling species occurrence) are used. Consequently, 
the variables used are often derived from a limited pool of available 
products (Araújo et al., 2019). Typical raster products, derived from 
ALS point clouds and provided by the government agencies along 
with the ALS data, comprise only digital terrain and surface mod-
els (Table 1). Subtracting a digital terrain model (DTM) from a digital 
surface model (DSM) results in a normalized digital surface model 
(nDSM), which represents the objects present (e.g., buildings, vege-
tation) on top of the relief. A special form of the nDSM, the so-called 
canopy height model (CHM), contains only the vegetation heights. 
As it is comparatively easy to obtain, metrics calculated from the 
CHM are the most commonly used variables in modelling species 
diversity and distribution (e.g., Bakx et al., 2019; Müller et al., 2010; 
Müller & Brandl, 2009; Rada et al., 2022); nevertheless, they only 
describe horizontal variation in canopy cover (Figure 1a). However, 

variables describing the vertical structure of vegetation are at least 
as important for the modelled species (Figure 1b). These character-
istics can be derived from ALS point clouds as easily as the afore-
mentioned digital elevation models (i.e., DTM, DSM, and CHM). 
The first attempt to provide a ready-to-use, standardized product 
that contains also vegetation structure variables was recently pre-
sented by Assmann et al.  (2022), who processed Danish national 
ALS data and made eight vegetation structure variables available for 
free download in raster format at 10 m resolution. The authors also 
provide documentation and source code for the processing work-
flow, which allows the methods to be applied to other ALS data-
sets (note, however, that they used commercial software). Similarly, 
Meijer et al. (2020) mention the calculation of vegetation structure 
variables at a resolution of 10 m for the entire Netherlands. These 
pioneering examples should be followed by more systematic efforts 
that lead to ALS-derived variables being available to a wider audi-
ence and standardized for use in ecological research.

3  |  WHICH VEGETATION STRUC TURE 
VARIABLES SHOULD BE PROVIDED A S 
STANDARD?

After a period of intensive research that has shown the irreplaceabil-
ity of ALS-derived vegetation structure variables for understanding 

F I G U R E  1  Example of an ALS point cloud profile. The top figure (a) illustrates that digital terrain and surface models (typical raster 
products derived from ALS point clouds offered by the data providing authorities), can be used to derive information on vegetation height 
and horizontal variation in canopy cover, but do not adequately describe the vertical variability of vegetation structure. The bottom figure 
(b) shows suitable variables to describe the vertical structure of the vegetation, which are proposed as standard structural variables in this 
study. Note that this figure is for illustrative purposes only and the density of the point cloud is considerably higher (75 points/m2) than the 
typical density of point clouds available in Europe. Details on the variables in (b) are given in Table 2. Colours indicate vegetation height. ALS, 
airborne laser scanning
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species–environment relationships, it is now time to make them 
available to a wider audience which will allow incorporating them 
as common variables in predictive models. Finding new ways to 
make ALS data easily accessible is a priority to accelerate ecological 
research (Assmann et al.,  2022; Stereńczak et al.,  2020). It would 
be valuable to have a list of several standardized variables recom-
mended for use in SDM and ecological research, so that scientists or 
authorities generating ALS-derived products know which to focus 
on. The chosen variables should be both ecologically relevant as well 
as easy to interpret and understand (Glad et al., 2020).

Variables that are difficult to interpret from an ecological 
point of view but have been used in previous research, such as the 
standard deviation of the 10th percentile (Zellweger et al.,  2013) 
or height skewness of the returns located between 1.5 and 5  m 
(Kortmann et al., 2018), may be less useful in this sense. A prime 
example of ecologically relevant and standardized variables are the 
19 bioclimatic variables (introduced by Hijmans et al.,  2005) that 
describe various physiological mechanisms limiting species occur-
rence, such as seasonality and extreme climatic conditions related 
to temperature and precipitation. These variables are widely used 
by ecologists and are nowadays provided as standard by the data-
providing institutions (Fick & Hijmans, 2017; Title & Bemmels, 2018; 
Vega et al., 2017).

LiDAR-derived variables can be grouped into four structural cat-
egories (cover, height, horizontal variability, and vertical variability) 
(Bakx et al., 2019). We propose 10 variables from the above classes 
as standard structural variables for ecological research (Table  2; 
Figure 1). Note, however, that we have not included horizontal veg-
etation variability metrics, as these can be easily calculated from the 
proposed variables (e.g., standard deviation of canopy cover). The 
proposed standard structural variables were selected based on the 
following criteria, building on previous work by Bakx et al.  (2019): 
(i) their applicability and ecological relevance have already been 
proven in several studies. Fifty-two of the 77 variables reviewed by 
Bakx et al.  (2019) were used in only one study and 10 more were 
used in two to four studies. Only 13 variables were used in at least 
five studies (out of 50 studies reviewed by Bakx et al., 2019), and 
from those we selected variables that (ii) are easy to interpret.

The maximum, mean, and standard deviation of vegetation 
returns are among the simplest metrics for describing the verti-
cal structure of vegetation. Tree height is a useful indicator of tree 
diameter and, to some extent, of tree age, which are important fac-
tors for species diversity. Hence, maximum height should be par-
ticularly useful in predicting the occurrence of species associated 
with mature, old-growth forests. For example, a positive relation-
ship between the maximum canopy height and species richness has 
been reported for birds (Flaspohler et al., 2010; Lesak et al., 2011) 
as well as vascular plants (Mao et al., 2018). Mean height of vegeta-
tion returns is particularly useful in combination with variability in 
return heights. For example, Vogeler et al. (2013) found a positive 
relationship between mean height, vertical variability of vegeta-
tion, and Brown Creeper (Certhia americana) occupancy. Similarly, 
Aguirre-Gutiérrez et al.  (2017) found that butterfly diversity 

increased with average vegetation height and vertical variability 
of vegetation. Together with vegetation height, vertical height 
variability reflects key structural differences between land cover 
and habitat types and is important for their differentiation (Koma, 
Seijmonsbergen, et al.,  2021; Prošek et al.,  2020). For example, 
lower mean height and high vertical variability could indicate for-
ests with sparse canopy and dense understorey vegetation.

Vertical height variability is often characterized by a single 
variable (e.g., the standard deviation of vegetation returns or fo-
liage height diversity index based on the Shannon-Wiener index; 
MacArthur & MacArthur, 1961). For example, Moudrý et al. (2021) 
and Weisberg et al. (2014) reported positive associations between 
bird species richness and the standard deviation of vegetation re-
turns or foliage height diversity, respectively. On the other hand, 
Vogeler et al.  (2014) found that foliage height diversity was not 
a strong predictor of bird species richness. This could be due to 
the fact that these individual variables may not fully capture the 
complex layering of vegetation. Other metrics characterizing the 
vertical vegetation profile as the proportions of returns within 
different vegetation layers (e.g., understorey, mid-storey, can-
opy) may be more useful. Such vertical stratification describes the 
presence of different age classes or life forms existing at certain 
heights (e.g., herbs, shrubs, and trees). In particular, understorey 
vegetation in forests (Clawges et al.,  2008; Vogeler et al.,  2014) 
and shrub vegetation such as hedgerows in agricultural landscapes 
(Pelletier-Guittier et al.,  2020) are often considered important 
factors for species richness, as they provide nesting and foraging 
habitats, affect visibility and prey abundance, and alter the near-
surface microclimate (Stickley & Fraterrigo,  2021). On the other 
hand, vegetation can also act as an obstacle, and it has been shown 
that forest-dwelling aerial insectivores, such as some bird species 
or bats, prefer forests without a shrub layer as an optimal forag-
ing habitat (Lesak et al., 2011; Rauchenstein et al., 2022). Similarly, 
Torre et al. (2022) have shown that the diversity of Mediterranean 
small mammal communities is negatively affected by the struc-
tural complexity of vegetation. On the other hand, herbaceous 
and shrub vegetation serve as important refuge for wildlife in 
landscapes heavily influenced by humans, such as agricultural 
and urban areas (Choi et al.,  2021; Melin et al.,  2018; Moudrá 
et al., 2018). Canopy cover can serve as a proxy for light availabil-
ity on the ground. Open canopy stands are often associated with 
dense understorey layers. Closed canopies, on the other hand, 
buffer microclimatic conditions such as temperature and moisture 
content (Davis et al., 2019).

We assume that stratifying the vegetation vertical structure into 
three basic layers (i.e., herbs, shrubs, and trees) is usually sufficient 
for modelling species distributions in temperate forests (e.g., Jones 
et al., 2013; Lesak et al., 2011; Müller et al., 2010; Rauchenstein 
et al., 2022), agricultural landscapes (Melin et al., 2018), as well as 
in early successional habitats (Moudrý et al., 2021). For Europe, we 
suggest calculating the cover of the herbaceous layer from returns 
below 1 m, the cover of the shrub layer from returns between 1 
and 3 m, and the cover of the tree layer from returns above 3 m 
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(Moudrý et al., 2021). However, the height of herbs/understorey, 
shrubs/mid-storey, and trees/canopy can vary considerably among 
different ecosystems even within Europe. Therefore, the proposed 
ranges may not be the best in certain situations, and the use of 
more detailed stratification of vegetation architecture may be help-
ful. For example, this could be the case when characterizing the 
structure of linear woody features such as hedgerows (Broughton 
et al., 2021), or vegetation density in urban parks (Choi et al., 2021). 
We therefore recommend that users are also provided with height 
percentiles and density proportions, which describe vertical vege-
tation structure in more detail (Table 2). Height percentiles indicate 
the height (in meters) below which a certain percentage of returns 
has been recorded, usually from 5% to 95% in 5% increments. For 
instance, if the 70th height percentile is 10  m, it means that the 
lowest 70% of the vegetation returns are below 10 m. Density pro-
portions reflect the proportion of points within a certain height bin 
to the total number of returns. We suggest the use of at least 10 
proportional density bins with larger distances at greater heights 
and smaller distances at lower heights (interval boundaries can be, 
for example, 0.5, 1.0, 2.0, 3.0, 5.0, 10, 20, 30, 40, and 50 m; Bae 
et al., 2014; Eldegard et al., 2014; Lesak et al., 2011).

The list of 10 proposed variables presented here is a starting 
point rather than a definitive list. The number of variables that can 
be calculated from ALS point clouds is infinite and new metrics are 
constantly being proposed, making the selection of standard vari-
ables a challenge (Carrasco et al.,  2019; Glad et al.,  2020; Hagar 
et al., 2020). However, there is currently insufficient evidence to 
suggest that any vegetation structural variable is the “universal best” 
for SDM (see reviews by Bakx et al., 2019; Davies & Asner, 2014). 
For this reason, we suggest that the above-mentioned variables 
should be routinely tested as part of ecological studies (e.g., SDM, 
habitat suitability), which focus on relevant spatial scale, target spe-
cies, habitat, etc. Such testing would allow their systematic and dy-
namic refinement based on their individual relevance in explaining 
species occurrences. When variables are freely available, they are 
likely to be tested by the scientific community in different settings 
and cases. Although it is difficult to orient such testing, it is to be 
expected that—as for other variables or remote sensing products—
the results of individual independent studies will be synthetized in 
reviews or meta-analyses, providing testing information that can 
guide the user community (e.g., Zolkos et al., 2013 review on above 
ground biomass estimation by LiDAR). The variables proposed in 
Table 2 should be derived in a standardized way from national air-
borne scanning campaigns (Valbuena et al., 2020) and be available 
to users as ready-to-use open access products (i.e., in a common 
raster format) through already existing data portals (Table 1). We 
propose 10–20 m as the optimal resolution for calculating these 
variables, which is a compromise between the grains usually used 
in studies on species distributions and habitat suitability and the 
typical density of national point clouds. For example, SDM studies 
typically use an analysis grain (i.e., the spatial unit in which the spe-
cies occurrence is modelled) between 10 m and 10 km (Mertes & 
Jetz, 2018; Moudrý & Šímová, 2012); however, environmental data 

should be available at an even more detailed resolution, sufficient 
to capture the smallest habitat patches suitable for a given species 
(Gottschalk et al., 2011; Koma, Seijmonsbergen, et al., 2021; Šímová 
et al., 2019). In addition, the resolution of the proposed standard 
structural variables needs to reflect the density of point clouds. 
While many European countries provide point clouds with a density 
of more than 4 points/m2 (e.g., Denmark, Netherlands, Switzerland, 
Slovenia, Slovakia, Latvia, and Poland), which is sufficient to obtain 
accurate estimates of vegetation structure at a resolution of 10 m 
(Assmann et al., 2022; Meijer et al., 2020), others have a relatively 
low density (e.g., Spain and Sweden have average point density be-
tween 0.5 and 2 points per square meter; Kakoulaki et al., 2021); 
when point clouds with such low density are used as a basis for 
modelling, it is preferable to use coarser resolutions for calculat-
ing these variables. Forestry applications using point clouds with 
similar densities typically adopt a resolution of 20 m to calculate 
vegetation metrics (e.g., Woods et al.,  2011), and a resolution of 
20–25 m has been shown to be sufficient to reduce potential errors 
in vegetation structure estimation due to low point cloud density 
(Ruiz et al., 2014; Treitz et al., 2012; Wilkes et al., 2015). In addition, 
countries may already provide other spatial datasets that the ALS-
based rasters could be aligned with (Finland, for instance, provides 
nationwide rasters derived from the National Forest Inventory with 
a spatial resolution of 16 m).

It is advisable that an authoritative institution takes the respon-
sibility for the production and the provision of vegetation structural 
variables. A coordinated international effort on this topic could be 
beneficial, as is the case with other remote sensing products, but the 
road in this direction might be long. In the meantime, it would be ben-
eficial if the same governmental agencies that are now responsible for 
storing and managing lidar data would also take on the responsibility 
of creating and openly providing lidar-based vegetation structure data.

4  |  CONCLUSION

The EBV Ecosystem structure, and in particular vegetation struc-
ture, is a fundamental physical element of habitat and as such is es-
sential for ecological research. However, to realize its full potential, 
data must be available in a form that can be accessed by users with 
average GIS experience. The need to create such variables based on 
ALS data is even greater because vegetation height is now available 
globally at a 10 m resolution (Lang et al., 2022). It is only a matter 
of time until other variables representing the vegetation structure 
become available (Dubayah et al.,  2020). However, these global 
vegetation height products are based on predictive models com-
bining spaceborne laser altimeters (e.g., GEDI) and optical remote 
sensing data (e.g., Sentinel-2) (Lang et al., 2022) and are therefore 
usually subject to significant errors. Their use in local scale model-
ling and biodiversity studies may lead to erroneous results (Meyer 
& Pebesma, 2022). Nevertheless, because they are readily available 
in a raster format, there is a risk that users will prefer global prod-
ucts to the tedious processing of much more accurate ALS data. 

 14724642, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ddi.13644 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [29/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



46  |    MOUDRÝ et al.

An one example, Lewis et al. (2022) calculated the mean and vari-
ance of canopy height from the 2019 Global Canopy Forest Height 
database (Potapov et al., 2021), even though ALS data for Georgia 
were available for the same period (opent​opogr​aphy.org). This ex-
ample once again underlines the importance of providing vegeta-
tion structure variables (and not only point clouds). In this article, 
we proposed variables that could be used as a standardized set for 
SDM and habitat analyses. Namely, we call for (i) the easy avail-
ability of such variables through existing data portals of national 
authorities in a common raster format (e.g., GeoTiff) together with 
DTMs and DSMs (the only raster products commonly derived from 
ALS) and (ii) their consistent selection and systematic testing. In the 
past, the standardization and improved availability of bioclimatic 
variables has had a major positive impact on ecological modelling. 
For this reason, we believe that similar efforts will have the same 
effect in the case of variables describing vegetation structure.
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