353 research outputs found

    Decadal trends in beach morphology on the east coast of South Africa and likely causative factors

    Get PDF
    Sandy shorelines are dynamic with constant changes that can cause hazards in developed areas. The causes of change may be either natural or anthropogenic. This paper evaluates evidence for shoreline changes and their causative factors using a case study on the east coast of South Africa. Beach morphology trends were found to be location-specific, but overall the beaches show a receding trend. It was hypothesized that wave, tide, sea level and wind trends as well as anthropogenic influences are causative factors, and their contributions to shoreline changes were evaluated. Maximum significant wave heights, average wave direction, peak period and storm event frequencies all show weak increasing trends, but only the increases in peak period and wave direction are statistically significant. The chronic beach erosion cannot be attributed to wave climate changes since they are still too small to explain the observations. Instead, the impacts of sea level rise and reductions in the supply of beach sediments are suggested as the main causative factors. The analysis also identifies a trend in the frequency of severe erosion events due to storms that coincide with a 4.5-yr extreme tide cycle, which demonstrates the potential impact of future sea level rise

    Processing and initial comparison of PSR data from CAMEX-3 to SSM/I and TMI data

    Get PDF
    A multiband Polarimetric Scanning Radiometer (PSR) was integrated on a NASA DC-8 aircraft and flown from August through September of 1998 during the third Convection and Moisture Experiment (CAMEX-3). The PSR is a new conically-scanning imaging radiometer with channels at 10.7, 18.7, 21.5, 37.0 and 89.0 GHz, including both vertical and horizontal polarizations at each of these frequencies. These channels correspond to several key sensing bands of the DMSP (Defense Meteorological Satellite Program) SSM/I (Special Sensor Microwave Imager) and the NASA TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager). The PSR was developed by Georgia Institute of Technology and the NOAA Environmental Technology Laboratory and is the first airborne imaging radiometer to provide a research quality dataset of high spatial resolution multiband polarimetric microwave imagery within and around a hurricane. The authors describe the processing and calibration of the PSR CAMEX-3 dataset. They also provide a qualitative analysis and comparison of the PSR imagery to the SSM/I and TMI with specific regard to the spatial structure of a hurricane eyewall and surrounding rainbands.Peer ReviewedPostprint (published version

    Spectral variability in phycocyanin cryptophyte antenna complexes is controlled by changes in the α‐polypeptide chains

    Get PDF
    Quantitative models of light harvesting in photosynthetic antenna complexes depend sensitively on the challenging determination of the relative site energies of the pigments. Here we analyze the basis of the light harvesting properties of four antennae from cryptophyte algae, phycocyanines PC577, PC612, PC630 and PC645, by comparing two alternative theoretical strategies to derive the excitonic Hamiltonian. The first is based on molecular dynamics simulations and subsequent polarizable quantum/molecular mechanics (QM/MMPol) calculations, whereas the second is based on three-layer QM/MMPol/ddCOSMO calculations performed on optimized geometries of the pigments, where the water solvent is described using the ddCOSMO continuum model. We find the latter approach to be remarkably accurate, suggesting that these four phycobiliproteins share a common energetic ordering PCB82 < PCB158 < DBV51/61 for pigments located in the highly-conserved ÎČ chains, whereas bilins in the more divergent α chains originate their spectral differences. In addition, we predict a strong screening of the coupling among central DBVs in 'open' form complexes PC577 and PC612 compared to 'closed' form ones, which together with the increased interpigment separation explains the attenuation of coherence beatings observed for these complexes

    Multiple Klebsiella pneumoniae KPC Clones Contribute to an Extended Hospital Outbreak

    Get PDF
    The circulation of carbapenem-resistant Klebsiella pneumoniae (CRKP) is a significant problem worldwide. In this work we characterize the isolates and reconstruct the spread of a multi-clone epidemic event that occurred in an Intensive Care Unit in a hospital in Northern Italy. The event took place from August 2015 to May 2016 and involved 23 patients. Twelve of these patients were colonized by CRKP at the gastrointestinal level, while the other 11 were infected in various body districts. We retrospectively collected data on the inpatients and characterized a subset of the CRKP isolates using antibiotic resistance profiling and whole genome sequencing. A SNP-based phylogenetic approach was used to depict the evolutionary context of the obtained genomes, showing that 26 of the 32 isolates belong to three genome clusters, while the remaining six were classified as sporadic. The first genome cluster was composed of multi-resistant isolates of sequence type (ST) 512. Among those, two were resistant to colistin, one of which indicating the insurgence of resistance during an infection. One patient hospitalized in this period was colonized by two strains of CRKP, both carrying the blaKPC gene (variant KPC-3). The analysis of the genome contig containing the blaKPC locus indicates that the gene was not transmitted between the two isolates. The second infection cluster comprised four other genomes of ST512, while the third one (ST258) colonized 12 patients, causing five clinical infections and resulting in seven deaths. This cluster presented the highest level of antibiotic resistance, including colistin resistance in all 17 analyzed isolates. The three outbreaking clones did not present more virulence genes than the sporadic isolates and had different patterns of antibiotic resistance, however, were clearly distinct from the sporadic ones in terms of infection status, being the only ones causing overt infections

    Geology of the Cerro Quema Au-Cu deposit (Azuero Peninsula, Panama)

    Get PDF
    The Cerro Quema district, located on the Azuero Peninsula, Panama, is part of a large regional hydrothermal system controlled by regional faults striking broadly E-W, developed within the Río Quema Formation. This formation is composed of volcanic, sedimentary and volcano-sedimentary rocks indicating a submarine depositional environment, corresponding to the fore-arc basin of a Cretaceous–Paleogene volcanic arc. The structures observed in the area and their tectono-stratigraphic relationship with the surrounding formations suggest a compressive and/or transpressive tectonic regime, at least during Late Cretaceous–Oligocene times. The igneous rocks of the Río Quema Formation plot within the calc-alkaline field with trace and rare earth element (REE) patterns of volcanic arc affinity. This volcanic arc developed on the Caribbean large igneous province during subduction of the Farallon Plate. Mineralization consists of disseminations of pyrite and enargite as well as a stockwork of pyrite and barite with minor sphalerite, galena and chalcopyrite, hosted by a subaqueous dacitic lava dome of the Río Quema Formation. Gold is present as submicroscopic grains and associated with pyrite as invisible gold. A hydrothermal alteration pattern with a core of advanced argillic alteration (vuggy silica with alunite, dickite, pyrite and enargite) and an outer zone of argillic alteration (kaolinite, smectite and illite) has been observed. Supergene oxidation overprinted the hydrothermal alteration resulting in a thick cap of residual silica and iron oxides. The ore minerals, the alteration pattern and the tectono-volcanic environment of Cerro Quema are consistent with a high sulfidation epithermal system developed in the Azuero peninsula during pre-Oligocene time

    Fault-controlled and stratabound dolostones in the Late Aptian-earliest Albian Benassal Formation (Maestrat Basin, E Spain) : petrology and geochemistry constrains

    Get PDF
    This study was developed under the ExxonMobil FC2 Alliance (Fundamental Controls on Flow in Carbonates). The authors wish to thank ExxonMobil Production Company and ExxonMobil Upstream Research Company for providing funding. The views in this article by Sherry L. Stafford are her own and not necessarily those of ExxonMobil. This research was supported by the Sedimentary Geology Research Group of the Generalitat de Catalunya (2014SGR251). We would like to thank Andrea Ceriani and Paola Ronchi for their critical and valuable reviews, and Associated Editor Piero Gianolla for the editorial work.Peer reviewedPostprin

    Reactivity of dolomitizing fluids and Mg source evaluation of fault-controlled dolomitization at the BenicĂ ssim outcrop analogue (Maestrat Basin, E Spain)

    Get PDF
    The mechanisms responsible for the formation of huge volumes of dolomitized rocks associated with faults are not well understood. We present a case study for high-temperature dolomitization of an Early Cretaceous (Aptian-Albian) ramp in BenicĂ ssim (Maestrat basin, E Spain). In this area, seismic-scale fault-controlled stratabound dolostone bodies extend over several kilometres away from large-scale faults. This work aims at evaluating different Mg sources for dolomitization, estimating the reactivity of dolomitizing fluids at variable temperature and quantifying the required versus available fluid volumes to account for the BenicĂ ssim dolostones. Field relationships, stable 13C and 18O isotopes, as well as radiogenic 87Sr/86Sr isotopes, indicate that dolomitization at BenicĂ ssim was produced by a high temperature fluid (> 80ÂșC). 13C and 18O isotopic compositions for dolomite vary from +0.5 and +2.9 V-PDB and from +21.1 and +24.3 V-SMOW, respectively. A Mg source analysis reveals that the most likely dolomitizing fluid was seawater-derived brine that interacted with underlying Triassic red beds and Paleozoic basement. Geochemical models suggest that evolved seawater can be considerably more reactive than high-salinity brines, and that the maximum reactivity occurs at about 100ÂșC. Mass-balance calculations indicate that interstitial fluids with high pressure and/or high temperature relative to the normal geothermal gradient cannot account for the volume of dolomite at BenicĂ ssim. Instead a pervasive fluid circulation mechanism, like thermal convection, is required to provide a sufficient volume of dolomitizing fluid, which most likely occurred during the Late Cretaceous post-rift stage of the Maestrat Basin. This study illustrates the importance of fluid budget quantification to critically evaluate genetic models for dolomitization and other diagenetic processes
    • 

    corecore