362 research outputs found
Simulation of some quantum gates, with decoherence
Methods and results for numerical simulations of one and two interacting
rf-Squid systems suitable for adiabatic quantum gates are presented. These are
based on high accuracy numerical solutions to the static and time dependent
Schroedinger equation for the full Squid Hamiltonian in one and two variables.
Among the points examined in the static analysis is the range of validity of
the effective two-state or ``spin 1/2'' picture. A range of parameters is
determined where the picture holds to good accuracy as the energy levels
undergo gate manipulations. Some general points are presented concerning the
relations between device parameters and ``good'' quantum mechanical state
spaces.
The time dependent simulations allow the examination of suitable conditions
for adiabatic behavior, and permits the introduction of a random noise to
simulate the effects of decoherence. A formula is derived and tested relating
the random noise to the decoherence rate. Sensitivity to device and operating
parameters for the logical gates NOT and CNOT are examined, with particular
attention to values of the tunnel parameter beta slightly above one. It appears
that with values of beta close to one, a quantum CNOT gate is possible even
with rather short decoherence times.
Many of the methods and results will apply to coupled double-potential well
systems in general.Comment: 26 pages, 15 figures, Some clarification added on decoherence
treatment, many small errors corrected, symbols on some figures enlarged,
refs added. No change in conten
Dynamic organization of ligand-grafted nanoparticles during adsorption and surface compression at fluid-fluid interfaces
Monolayers of ligand-grafted nanoparticles at fluid interfaces exhibit a complex response to deformation due to an interplay of particle rearrangements within the monolayer, and molecular rearrangements of the ligand brush on the surface of the particles. We use grazing-incidence small-angle X-ray scattering (GISAXS) combined with pendant drop tensiometry to probe in situ the dynamic organization of ligand-grafted nanoparticles upon adsorption at a fluid–fluid interface, and during monolayer compression. Through the simultaneous measurements of interparticle distance, obtained from GISAXS, and of surface pressure, obtained from pendant drop tensiometry, we link the interfacial stress to the monolayer microstructure. The results indicate that, during adsorption, the nanoparticles form rafts that grow while the interparticle distance remains constant. For small-amplitude, slow compression of the monolayer, the evolution of the interparticle distance bears a signature of ligand rearrangements leading to a local decrease in thickness of the ligand brush. For large-amplitude compression, the surface pressure is found to be strongly dependent on the rate of compression. Two-dimensional Brownian dynamics simulations show that the rate-dependent features are not due to jamming of the monolayer, and suggest that they may be due to out-of-plane reorganization of the particles (for instance expulsion or buckling). The corresponding GISAXS patterns are also consistent with out-of-plane reorganization of the nanoparticles
Mechanical analysis of the ENEA TF coil proposal for the EU DEMO fusion reactor
The design of the superconducting magnet system of the European DEMO fusion reactor is currently being pursued in the framework of the EUROfusion Magnets Work Package (WPMAG). Three alternative winding pack (WP) options for the Toroidal Field Coils (TFCs) are being proposed by different research units, each featuring a different conductor manufacturing technology (react-and-wind vs. wind-and-react) or winding layout (layer vs. pancake).
One of the options (namely, WP#2), proposed by Italian ENEA, features a layer-wound WP design adopting a wind-and-react conductor with rectangular cross section with high aspect ratio, obtained squeezing an initially circular conductor.
In order to assess the capability of all the TFC components to withstand the electromagnetic loads due to the huge Lorentz forces without any structural failure during the magnet lifetime, the mechanical analysis of the 2016 version of the WP#2 design option is performed here applying a hierarchical approach herein defined as the Stress Recovery Tool (SRT): the Finite Element Analysis (FEA) of a whole magnet (including the casing) is performed at a low computational cost adopting a coarse WP model with smeared (homogenized) properties. The displacements computed on the smeared WP are then used as boundary conditions for a refined FEA of some WP slices, located in selected (critical) poloidal positions, where all the conductors detailed features (jacket, insulations) are properly accounted for
Doxorubicin and congo red effectiveness on prion infectivity in golden Syrian hamster
The effect of doxorubicin and Congo Red on prion protein (PrP) infectivity in experimental scrapie was studied to better understand the effect of these compounds in prion diseases and to establish whether a dose-response correlation exists for Congo Red. This was performed in order to test the effectiveness of compounds that may easily be used in human prion diseases. Brain homogenate containing membrane bound PrPSc monomers was used as inoculum and was previously incubated with doxorubicin 10(-3) M and with increasing concentrations of Congo Red ranging from 10(-7) to 10(-2) M. This study shows for the first time that doxorubicin, and confirms that Congo Red, may interact with pathological PrP monomers modifying their infectious properties. Pre-incubation of infected brain homogenate with Congo Red resulted in prolonged incubation time and survival, independently of Congo Red concentration (p<0.05). Doxorubicin and Congo Red effects do not depend upon interaction with PrP amyloid material
Topology-Induced Critical Current Enhancement in Josephson Networks
We investigate the properties of Josephson junction networks with
inhomogeneous architecture. The networks are shaped as "quare comb" planar
lattices on which Josephson junctions link superconducting islands arranged in
the plane to generate the pertinent topology. Compared to the behavior of
reference linear arrays, the temperature dependencies of the Josephson currents
of the branches of the network exhibit relevant differences. The observed
phenomena evidence new and surprising behavior of superconducting Josephson
arrays as well as remarkable similarities with bosonic junction arrays.Comment: improved figures (added magnetic pattern and single junction
switching) some changes in the text and in the titl
Adiabatic evolution of a coupled-qubit Hamiltonian
We present a general method for studying coupled qubits driven by
adiabatically changing external parameters. Extended calculations are provided
for a two-bit Hamiltonian whose eigenstates can be used as logical states for a
quantum CNOT gate. From a numerical analysis of the stationary Schroedinger
equation we find a set of parameters suitable for representing CNOT, while from
a time-dependent study the conditions for adiabatic evolution are determined.
Specializing to a concrete physical system involving SQUIDs, we determine
reasonable parameters for experimental purposes. The dissipation for SQUIDs is
discussed by fitting experimental data. The low dissipation obtained supports
the idea that adiabatic operations could be performed on a time scale shorter
than the decoherence time.Comment: 10 pages, 4 figures, to be pub.in Phys Rev
Electron interference and entanglement in coupled 1D systems with noise
We estimate the role of noise in the formation of entanglement and in the
appearance of single- and two-electron interference in systems of coupled
one-dimensional channels semiconductors. Two cases are considered: a
single-particle interferometer and a two-particle interferometer exploiting
Coulomb interaction. In both of them, environmental noise yields a
randomization of the carrier phases. Our results assess how that the
complementarity relation linking single-particle behavior to nonlocal
quantities, such as entanglement and environment-induced decoherence, acts in
electron interferometry. We show that, in a experimental implementation of the
setups examined, one- and two-electron detection probability at the output
drains can be used to evaluate the decoherence phenomena and the degree of
entanglement.Comment: 12 pages, 6 figures. v2: added some references and corrected tex
- …