4 research outputs found

    Convergent amino acid signatures in polyphyletic Campylobacter jejuni subpopulations suggest human niche tropism

    Get PDF
    Human infection with the gastrointestinal pathogen Campylobacter jejuni is dependent upon the opportunity for zoonotic transmission and the ability of strains to colonize the human host. Certain lineages of this diverse organism are more common in human infection but the factors underlying this overrepresentation are not fully understood. We analyzed 601 isolate genomes from agricultural animals and human clinical cases, including isolates from the multihost (ecological generalist) ST-21 and ST-45 clonal complexes (CCs). Combined nucleotide and amino acid sequence analysis identified 12 human-only amino acid KPAX clusters among polyphyletic lineages within the common disease causing CC21 group isolates, with no such clusters among CC45 isolates. Isolate sequence types within human-only CC21 group KPAX clusters have been sampled from other hosts, including poultry, so rather than representing unsampled reservoir hosts, the increase in relative frequency in human infection potentially reflects a genetic bottleneck at the point of human infection. Consistent with this, sequence enrichment analysis identified nucleotide variation in genes with putative functions related to human colonization and pathogenesis, in human-only clusters. Furthermore, the tight clustering and polyphyly of human-only lineage clusters within a single CC suggest the repeated evolution of human association through acquisition of genetic elements within this complex. Taken together, combined nucleotide and amino acid analysis of large isolate collections may provide clues about human niche tropism and the nature of the forces that promote the emergence of clinically important C. jejuni lineages.Peer reviewe

    Bayesian identification of bacterial strains from sequencing data

    Get PDF
    Rapidly assaying the diversity of a bacterial species present in a sample obtained from a hospital patient or an environmental source has become possible after recent technological advances in DNA sequencing. For several applications it is important to accurately identify the presence and estimate relative abundances of the target organisms from short sequence reads obtained from a sample. This task is particularly challenging when the set of interest includes very closely related organisms, such as different strains of pathogenic bacteria, which can vary considerably in terms of virulence, resistance and spread. Using advanced Bayesian statistical modelling and computation techniques we introduce a novel pipeline for bacterial identification that is shown to outperform the currently leading pipeline for this purpose. Our approach enables fast and accurate sequence-based identification of bacterial strains while using only modest computational resources. Hence it provides a useful tool for a wide spectrum of applications, including rapid clinical diagnostics to distinguish among closely related strains causing nosocomial infections. The software implementation is available at https://github.com/PROBIC/BIB.Peer reviewe
    corecore