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Abstract. It is known that directed acyclic graphs (DAGs) may hide several local features of
the joint probability distribution that can be essential for some applications. To remedy this,
more expressive model classes have been introduced. In addition to the restrictions implied by
conditional independence, these model classes typically include some form of local structure
that implies equality constraints on the node-wise conditional distribution. In particular,
the concept of context-specific independence (CSI) was introduced to increase the flexibility
of traditional Bayesian networks. Furthermore, in the most expressive class of generalized
Bayesian networks, decision graphs were used to model arbitrary parameter restrictions. Here
we formulate an alternative representation of such models called a partition DAG (PDAG),
which defines the parameter restrictions using a partition-based representation of the parent
outcome spaces. We establish a criterion that can identify whether an arbitrary PDAG has
a CSI-consistent representation using an efficient basic graph theoretic algorithm. Based on
a recursive inference algorithm for partition posteriors, an exact Bayesian learning method is
introduced. We demonstrate on real data that exact learning of PDAGs can identify important
relationships between variables that have not been discovered by previous graphical model
learning methods.

1. Introduction
Bayesian networks have represented a standard workhorse in artificial intelligence and machine
learning for more than two decades [15]. However, it has also been acknowledged that the
directed acyclic graphs (DAGs) they are based upon, may hide several local features of the
joint probability distribution that can be essential for some applications. To remedy this,
more expressive classes of Bayesian networks have been introduced [4, 5, 9, 10, 17, 18, 20].
In particular, several of the introduced model classes [4, 9, 17, 20] have been built around the
concept of context-specific independence (CSI), which is a natural generalization of conditional
independence. In addition to generalized Bayesian networks, the related classes of probabilistic
decision graphs (PDGs) [12] and chain event graphs (CEGs) [22] have been introduced for the
purpose of capturing asymmetric model structures.

The common feature among most classes of generalized Bayesian networks is that additional
local restrictions impose some form of equality constraints on the node-wise conditional
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http://creativecommons.org/licenses/by/3.0


2

1234567890 ‘’“”

International Meeting on “High-Dimensional Data-Driven Science” (HD3-2017) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1036 (2018) 012017  doi :10.1088/1742-6596/1036/1/012017

distributions. The equality constraints effectively partition the outcome space of the parents of
a node into classes, such that parent configurations belonging to the same class induce the same
distribution. The structure of the possible partitions depends on the generality of the restrictions
[18]. In this work we will consider Bayesian networks with arbitrary equality constraints, that is,
arbitrary partitions. This corresponds to using decision graphs for modeling the local structure
between a node and its parents [5], however, we will consider an alternative representation based
on the actual parent outcome partitions. In contrast to decision graphs, each distinct partition
will correspond to a unique set of restrictions. We refer to the model structure containing
both the global DAG structure and the local parent outcome partitions as a partition DAG
(PDAG). When each partition in a PDAG has maximum cardinality, only the independence
characteristics of the DAG itself are retained. With a decreasing number of classes in a partition,
an increasing set of additional local constraints are introduced to the conditional distribution of
the corresponding node. Some of these will typically correspond to CSIs, but in general not all
of them will be interpretable as such.

The modular composition of Bayesian networks is a very important structural property
in terms of model learning. In particular, for a given a DAG, the variables specifying the
local structure of a node are confined to the parents of the node, enabling efficient learning of
Bayesian networks with local structure. In contrast, one of the key features of models such
as PDGs and CEGs is the ability to model conditioning contexts that consist of specific joint
configurations of large collections of variables. Although these high-order interactions make the
models extremely flexible, they also make learning of such graphs very challenging. As a result,
methods developed for PDG and CEG learning have exploited Bayesian network learning as a
step of the learning procedure [13, 1]. Still, numerical experiments have indicated the difficulty
in learning PDG/CEG models with higher predictive accuracy than standard Bayesian networks
[13, 21].

The paper is organized as follows. In Section 2 we introduce PDAGs and discuss their
connection to the well-known concept of CSI. In section 3 we introduce a graph theoretical
condition for determining if an arbitrary PDAG has a CSI-based dependence structure, and if
not, we explain how one can modify the partitions in order to make them consistent with CSI.
Section 4 describes how to evaluate the Bayesian score of a PDAG for a given set of data. Section
5 presents a recent recursive algorithm for exact learning of the optimal parent partitions. The
algorithm can in the binary case efficiently identify the maximum a posteriori partition of a
parent outcome space for up to four binary parents. In Section 6 we demonstrate using real
data that exact learning of PDAGs can identify important relationships between variables that
have not been earlier discovered by any other graphical model learning methods. Finally, in
Section 7 we provide some additional remarks and discuss some ideas for future research.

2. Partition Directed Acyclic Graphs
A DAG is a graph G = (V,E) consisting of a set of nodes V = {1, . . . , d} and a set of edges
E ⊂ V × V such that (u, v) ∈ E if there is a directed edge from node u to v. The acyclicity
restriction prevents the edge set from containing directed cycles. The set of parents of node v
is denoted by pa(v) = {u ∈ V : (u, v) ∈ E}. In a Bayesian network, the nodes V correspond
to a set of stochastic variables X = {X1, . . . , Xd}. We use XS , where S ⊆ V , to denote a set
of variables and we use lower case letters xS to denote a value taken by XS . The outcome
space of a set of variables XS is denoted by XS , and the cardinality is denoted by |XS |. In this
work, we assume that all considered variables are binary, Xv = {0, 1}. Our results generalize to
non-binary variables in a relatively straightforward manner.

A Bayesian network models the joint distribution over XV by asserting statements of
conditional independence,

XA ⊥ XB | XS ⇔ p(XA | XB, XS) = p(XA | XS).
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X1 X2 X3 p(X4 | X1,2,3)

0 0 0 p1
0 0 1 p2
0 1 0 p3
0 1 1 p4
1 0 0 p5
1 0 1 p6
1 1 0 p7
1 1 1 p8

X1 X2 X3 p(X4 | X1,2,3)

0 0 0 p1
0 0 1 p2
0 1 0 p3
0 1 1 p3
1 0 0 p4
1 0 1 p5
1 1 0 p3
1 1 1 p6

X1 X2 X3 p(X4 | X1,2,3)

0 0 0 p1
0 0 1 p2
0 1 0 p2
0 1 1 p3
1 0 0 p4
1 0 1 p2
1 1 0 p2
1 1 1 p5

(a) (b) (c)

Table 1. CPT of node 4 when pa(4) = {1, 2, 3}: (a) no regularities, (b) CSI-based regularities,
and (c) arbitrary regularities.

The conditional independence statements assumed by a Bayesian network are compactly encoded
by its DAG, where edges correspond to direct dependencies and lack of edges corresponds to
conditional independencies. More specifically, the dependence structure is characterized by the
local directed Markov property, which implies an explicit factorization of the joint distribution
according to

p(X1, . . . , Xd) =

d∏
v=1

p(Xv | Xpa(v)). (1)

In (1), each factor corresponds to a collection of conditional probability distributions (CPDs).
By definition, each collection of CPDs implicitly assumes full dependence of v on its parents, i.e.
separate parameters are needed to specify the CPD for all combinations in Xpa(v). In general,
this requires

(|Xv| − 1) ·
∏

u∈pa(v)

|Xu|

free parameters. In other words, under the assumption of binary variables, the number of
parameters needed to specify all CPDs overXv is 2|pa(v)|. The standard approach for representing
the CPDs associated with a node is to use a conditional probability table (CPT). An example
of a traditional CPT with distinct CPDs is shown in Table 1(a).

A limitation of traditional Bayesian networks is that the number of model parameters
associated with a node grows exponentially with the number of parents. However, in many
situations, there may exist regularities in form of identical CPDs within a CPT. One of the
earliest and most well-known approaches for capturing such regularities introduced the concept
of context-specific independence (CSI) [4]:

XA ⊥ XB | xC , XS ⇔ p(XA | XB, xC , XS) = p(XA | xC , XS).

CSI is a natural generalization of conditional independence that only holds in part of the outcome
space, as specified by the context XC = xC . In terms of CPTs, we consider local CSIs of the
form

Xv ⊥ Xu | xpa(v)\u, where u ∈ pa(v),

since such statements will imply identical CPDs within the CPT:

p(Xv | xu, xpa(v)\u) = p(Xv | x′u, xpa(v)\u) for all xu, x
′
u ∈ Xu.



4

1234567890 ‘’“”

International Meeting on “High-Dimensional Data-Driven Science” (HD3-2017) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1036 (2018) 012017  doi :10.1088/1742-6596/1036/1/012017

In the binary case, a local CSI thus corresponds to a restriction forcing exactly two values in
the CPT of v to be identical. As an example, consider the CPT in Table 1(b), where the parent
configurations (0, 1, 0), (0, 1, 1), (1, 1, 0) all induce the same conditional probability p3. A closer
examination reveals that this particular CPT structure can be explained by the CSIs

X3 ⊥ X4 | X1 = 0, X2 = 1 and X1 ⊥ X4 | X2 = 1, X3 = 0.

Rather than specifying the same distribution multiple times, the above parent configuration can
then be merged into a single class of configurations. Hence, the set of restrictions imposed by a
collection of CSIs defines a partition of the parent outcome space into classes, where all elements
in the same class induce an identical CPD.

Note, however, that the converse is not true, that is, an arbitrary partition of the parent
outcome space does not necessarily correspond to a collection of CSIs. In this work, we go
beyond CSI-based regularities and consider arbitrary regularities of the form

p(Xv | xpa(v)) = p(Xv | x′pa(v)).

As an example, consider the CPT in Table 1(c), where (0, 0, 1), (0, 1, 0), (1, 0, 1), (1, 1, 0) all
induce the same conditional probability p2. In contrast to the previous example (Table 1(b)),
these regularities cannot be fully explained by CSI and we need to allow arbitrary partitions
to compactly represent the CPT structure. We discuss this more in detail in the next section,
where we also introduce a criterion for determining whether the regularities in a CPT can be
explained by CSI or not.

In general, Bayesian networks with parent outcome partitions enjoy similar flexibility in
terms of parameter restrictions as probabilistic decision graphs, but are based on a different
representation that enables efficient learning algorithms to be developed. To formally represent
the structure of Bayesian networks with arbitrary parent outcome partitions, we introduce the
concept of partition DAGs.

Definition 1. Partition DAG
Let G = (V,E) be a DAG for the stochastic variables {X1, . . . , Xd}. For all v ∈ V , let Sv
be a partition of the set Xpa(v) into k classes s1, . . . , sk such that the conditional probabilities
p(xv | xpa(v)) are equal for all xpa(v) ∈ sc, c = 1, . . . , k and unrestricted otherwise. The graph G
together with the collection of partitions S = {Sv : v ∈ V } define a Partition DAG (PDAG),
denoted by GS .

For notational simplicity, indexing of the partition Sv and the number of classes k in it with
respect to the node is not explicitly shown for each class of Sv when the meaning is unambiguous.
Note that k may freely vary across the nodes v ∈ V .

3. CSI-consistent partition
In [17], a parent outcome partition is referred to as CSI-consistent if it can be constructed
according to a collection of local CSIs. As discussed in the previous section, an arbitrary
partition would typically be expected to reside beyond the scope of CSI, however, then the
following questions arise: what restrictions must a partition satisfy in order to be CSI-consistent,
and if a partition is not CSI-consistent, how can it be modified to become CSI-consistent? CSI-
consistency can be a useful property. For example, previous research has shown that CSI can
be exploited to improve the efficiency of inference algorithms [19, 20].

To construct a procedure for determining if a partition is CSI-consistent we introduce the
following graphical criterion.
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(a) (b)
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Figure 1. The class connection graph of the non-singleton class in the partition obtained from
the CPT in (a) Table 1(b) and (b) Table 1(c). For clarity, the nodes are labeled with the
corresponding parent configurations.

Definition 2. Class connection graph
A class connection graph Gc = (N,E) for a class c for v ∈ V is an undirected graph over the

class elements sc = {x(l)
pa(v)}

q
l=1 such that q = |sc| and

N = sc and {l, r} ∈ E if d(x
(l)
pa(v), x

(r)
pa(v)) = 1,

where d(·, ·) is the Hamming distance between the two configurations.

Theorem 1. A partition Sv = {s1, . . . , sk} is CSI-consistent if and only if the corresponding
class connection graphs G1, . . . , Gk are connected.

Proof. See Appendix A.

Theorem 1 basically reformulates the problem of checking for CSI-consistency to a well-known
graph connectivity problem for which there already exist several efficient methods such as the
depth-first and breadth-first algorithms [11].

To illustrate the criterion, consider the partition obtained from the CPT in Table 1(b). The
class connection graph of the non-singleton class is shown in Figure 1(a). Note that the class
connection graph of a singleton class is connected by definition. Since the graph in Figure 1(a)
is connected, the partition is CSI-consistent. On the other hand, consider the partition obtained
from the CPT in Table 1(c). The class connection graph of the non-singleton class is shown
in Figure 1(b). In this case, the graph is not connected and, consequently, the partition is not
CSI-consistent. However, if we would split the class

{(0, 0, 1), (0, 1, 0), (1, 0, 1), (1, 1, 0)}

into two new classes
{(0, 0, 1), (1, 0, 1)} and {(0, 1, 0), (1, 1, 0)},

the partition would become CSI-consistent, since all class connection graphs would then be
connected. The new representation would no longer be minimal in terms of the number of
parameters, since the same distribution would have to be defined twice. Still, the criterion
provides a straightforward way of making an arbitrary partition CSI-consistent by removing as
few equality constraints as possible.
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4. Bayesian score for PDAGs
A very useful property of PDAGs and similar models is that the marginal likelihood can still
be evaluated by a closed-form expression [5]. Let X = {xi}ni=1 denote a set of training data
consisting of n observations xi = (xi1, . . . xid), assuming that X contains no missing values. We
let θvc denote the probability of Xv = 1 given that Xpa(v) is assigned a value in class c of the
partition Sv. For a given PDAG GS , we let θGS denote collectively all the unknown parameters
in the CPTs. The likelihood of a PDAG can then be written as

p(X | θGS , GS) =
d∏

v=1

kv∏
c=1

θn(v,c,1)
vc (1− θvc)n(v,c,0),

where n(v, c, 1) denotes the total count of observations with xv = 1 and xpa(v) falling into
the class c of Sv. Further, n(v, c, 0) is the corresponding count with xv = 0 and n(v, c) =
n(v, c, 0)+n(v, c, 1). We use a prior for θGS which factorizes over the DAG and the classes, such
that the marginal likelihood (or evidence) of the data can be calculated analytically. Under the
standard conjugate Beta prior, we obtain the following expression for the marginal likelihood
given the PDAG:

p(X | GS) =
d∏

v=1

kv∏
c=1

Γ(α)

Γ(n(v, c) + α)

1∏
l=0

Γ(n(v, c, l) + αl)

Γ(αl)
, (2)

where α = α0 + α1.
There are several options in terms of specifying the hyperparameters in (2), see e.g.

[15]. In all the numerical experiments reported here we have used the uniform prior with
α1 = α0 = 1. Following the Bayesian approach of structure learning, we aim at maximizing
log p(X | GS) + log p(GS), where p(GS) is a product prior over the d partitions. Each prior
factor in the product is assumed to be defined by the uniform distribution on the number of
classes kv in the partition Sv. Further discussion about the choice of priors is found in the final
section of the paper.

5. Exact PDAG learning algorithm
Learning PDAGs from training data is in general extremely challenging. Even for a fixed ordering
of the variables specified by a candidate DAG, there exist extremely many possible partitions of
the parent outcome space for each single node. For example, for a node with 3 (binary) parents,
there are 4140 ways to partition the 8 possible parent configurations, whereas for a node with
4 parents, the corresponding number is already 10,480,142,147. In general, the number of
unordered partitions of |Xpa(v)| entries is given by the Bell number of |Xpa(v)|. While direct
complete enumeration of all possible partitions is in practice tedious for cases with more than
two parents, the recursive algorithm for exact posterior inference about clustering introduced in
[14] is sufficiently fast for exact learning of partitions in a PDAG with at most 4 parents for any
node.

Let S(Xpa(v), kv) be the Stirling number of the second kind, i.e. the number of possible
partitions of Xpa(v) into exactly kv non-overlapping and non-empty subsets. We set the prior

probability of a partition Sv equal to |Xpa(v)|−1S(Xpa(v), kv)−1, which corresponds to the uniform
distribution for the number of classes kv for node v. To enable use of the recursive algorithm
for posterior inferences, we consider now ordered partitions, each of which is a tuple of disjoint
nonempty subsets, whose union is Xpa(v).

The posterior probability of an ordered partition Sv with kv classes in the PDAG model
equals

p(Sv | X) =
p(Sv)p(X | S)

p(X)
= Z ·

kv∏
c=1

f(sv,c),
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where Z is the normalizing constant and f(sv,c) is the marginal likelihood term for class c in
(2). The posterior probability of k clusters equals under the above formulation

p(kv | X) = Z ·
∑

Sv∈Sv
|Sv |=k

kv∏
c=1

f(sv,c), (3)

where Sv is the space of ordered partitions for node v. This sum of products can be conveniently
expressed by subset convolution. Given two real-valued functions f and g defined on the subsets
of XΠv , their subset convolution is the function

(f ∗ g)(Y ) =
∑
A⊆Y

f(A) · g(Y \A), for all Y ⊆ Xpa(v). (4)

Expressed in a more symmetric form we get

(f ∗ g)(Y ) =
∑

A,B⊆X
A+B=Y

f(A) · g(B),

where A+B = Y represents disjoint union. Convolution is associative, and iterative application
hence yields

(f1 ∗ . . . ∗ fkv)(Y ) =
∑

A1,...,Akv⊆Y
A1+...+Akv=Y

kv∏
c=1

fc(Ac).

The kv-fold convolution expresses summation over ordered kv-partitions of a set Y . Writing (3)
in terms of iterated convolution yields

p(kv | X) = Z · f (kv)(Xpa(v)), (5)

where f (kv) = (f ∗ . . . ∗ f) denotes the convolution of kv copies of f .

The full convolution table for f∗g can be obtained in O(3|Xpa(v)|) operations, which is still very
fast for the case with 4 parent nodes. In practice these calculations can be done in approximately
1 minute for such a node of a PDAG model, whereas 3 parent nodes can be handled in a
fraction of a second. When the summation in (3) is replaced with maximization, one obtains
the maximum posterior probability among kv-partitions. This can be computed using a variant
of subset convolution, where the summation is replaced with maximization such that the subset
convolution is performed over the max-product semiring, instead of the sum-product ring. This
yields an O(|Xpa(v)|3|Xpa(v)|) algorithm for finding the maximum a posteriori (MAP) partition
for any node-parent combination in a PDAG.

6. Experiments
6.1. Heart disease data
A classical data set used for benchmarking various graph learning algorithms is the coronary
heart disease risk factor data set with 1841 observations on 6 binary variables [8, 23, 17].
Definitions of the variables are given in Table 2. The data set has been considered also in
numerous other articles about graphical model learning and a consistent finding is that the
Family anamnesis of coronary heart disease is independent of all the remaining variables.

Figure 2 shows the DAG with the parent sets of nodes being determined by exact learning such
that at most four parent candidates were considered simultaneously and the available partial
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Variable Outcomes

X1: Smoking No := 0,Yes := 1

X2: Strenuous mental work No := 0,Yes := 1

X3: Strenuous physical work No := 0,Yes := 1

X4: Systolic blood pressure < 140 := 0, > 140 := 1

X5: Ratio of β and α lipoproteins < 3 := 0, > 3 := 1

X6: Family anamnesis of CHD No := 0,Yes := 1

Table 2. Description of the variables in coronary heart disease (CHD) data.

(a) (b) (c)

X1356 #0 #1 X̄4

0001 26 15 0.3659
1000 107 45 0.2961
1100 168 76 0.3115
class 1 301 136 0.3112

class 2 753 651 0.4637

X1256 #0 #1 X̄4

0011 16 9 0.3600
1000 185 79 0.2992
1100 90 42 0.3182
class 1 291 130 0.3088

class 2 763 657 0.4627

X156 #0 #1 X̄4

100 275 121 0.3056
class 1 275 121 0.3056

class 2 779 666 0.4609

Table 3. MAP partition for X4 with parent set (a) 1356, (b) 1256, and (c) 156. Details of
class 2 have been omitted. For each combination of parent values, #0 and #1 are the counts of
X4 = 0 and X4 = 1, respectively, and the last column is the proportion of ones.

ordering of the variables was used to exclude certain candidate nodes from the set of possible
parents. In practice, nodes 4 and 5 had each four possible parents, whereas node 3 had two
and node 2 only one. Nodes 1 and 6 had no possible parents given the imposed partial ordering
information. For a detailed discussion of these data see, e.g. [23].

In the more comprehensive analysis reported below, we concentrate on variable X4 (systolic
blood pressure) and its parent structure. As at most four parent candidates were considered at
a time, there are

(
5
4

)
= 5 different candidate sets of parents, in shorthand notation: 2356, 1356,

1256, 1236 and 1235.
For each candidate set we obtained the MAP partition for the 16 parent value combinations

as discussed before. The log marginal likelihoods of the MAP partitions (relative to the trivial
partition) are +0.0, +13.5, +13.4, +0.0 and +10.5, respectively. The two highest likelihoods
(with almost a tie) occur for the candidate sets 1356 and 1256, which are highly similar to each
other. In both cases the MAP partition is a 2-partition where the smaller class contains three
parent value combinations, as illustrated in Tables 3(a)–(b).

In both tables, we can see that the smaller class contains parent configurations, for which
X4 has a low probability of high blood pressure. In both cases, the first row, which contains
relatively few observations overall, seems somewhat odd and might be a random artefact. The
remaining two rows, 1000 and 1100 in either case, appear more plausible, and they would seem to
indicate an interesting phenomenon in the data: if (X1, X5, X6) = (1, 0, 0), then the probability
of X4 = 1 is much lower than otherwise.

This dependence, where just one particular combination of three binary variables has a joint
effect on a fourth variable, is not explicitly caught by the structure of ordinary DAG models.
As mentioned above, despite of numerous previous analyses of this data with various Bayesian
and Markov network models, any significant association between the family anamnesis of CHD
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2 5 6

3

1

4

Figure 2. DAG structure for the heart disease data.

and the remaining variables has never been detected. However, it has been remarked that the
lack of an association between node 6 and the two biologically measured variables (nodes 4 and
5) is surprising, given that CHD among relatives is a known risk factor.

To explore the association a bit further, we also examine the optimal parent set with only
3 nodes. This contains the nodes 156 and the MAP partition of the 8 parent configurations is
shown in Table 3(c). Again, we obtain a 2-partition, but now the smaller class contains just the
one parent configuration 100, while the seven other combinations are in the other class. The
finding can be interpreted such that individuals that smoke and have a low lipoprotein ratio
as well as no family anamnesis of CHD, have a lower probability of high blood pressure than
others. The reason why the connection between the family history variable (node 6) and the
other CHD risk factors is not revealed in ordinary pairwise association or network analysis, is
the context-specific nature of their dependence, which is masked by the distribution of the other
conditional probabilities in Table 3(c). All these probabilities are within 3 percentage points
from the mean of class 2 (0.46), whereas only the configuration 100 corresponds to much smaller
probability (0.31), still based on substantial amount of data (396 observations).

6.2. Simulated data
To gauge the behavior of the learning algorithm, we performed a simulated data study using
the CSI-based model with 10 binary variables introduced in [17]. Due to space limitations, we
focus here on variable X5, which has three parents X1, X4 and X8, and satisfies the CSI

X5 ⊥ X4, X8 | X1 = 0.

In other words, there are 8 parent configurations which are partitioned into 5 classes such that
one class contains the four configurations where X1 = 0, and the four remaining classes contain
a single configuration.

In the simulation, we generated 100 random replicates of data with varying sizes according to
the given model, and then identified the MAP partition using the subset convolution algorithm
for each replicate. The MAP partition was compared to the generating partition using two
metrics: adjusted Rand index, and zero-one-loss (one if the partitions are identical, zero
otherwise). The results of both metrics are shown in Figure 3.

As expected, the more data we have, the closer the learned partition is to the structure
in the generating model. We note that fairly large sample sizes are required to obtain very
accurate results. This is reasonable, since the PDAG model class is extremely flexible and
e.g. 1000 observations split over the 16 value combinations (two child node outcomes for each
combination of parental values) means on average only 60 samples per category and the variation
around this may also be substantial. It is important to notice the difference between the
generating distribution used for the simulations and the structure of the real CHD data analyzed
previously. As shown for the CHD data, the conditional probabilities were highly similar across
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(a) (b)

Figure 3. Simulated data study with data sizes ranging from 1000 to 100000. Vertical axis:
(a) adjusted Rand index between inferred and the generating partition (black: average over 100
replications; blue: 5% and 95% quantiles), (b) proportion of inferred partitions equal to the
structure of the generating model in 100 replications.

the parental combinations of node 4, except in one case. In contrast, the conditional probabilities
in the synthetic model have been sampled from a prior distribution (when not forced equal),
which means that they are more uniformly spread across the interval (0, 1), such that any two
probabilities may coincidentally be fairly close to each other. This would typically require more
data for accurate learning of the underlying partition.

7. Discussion
Our approach has focused on the representability and interpretability of partitions of CPT
elements to encode local restrictions on the parameters of a DAG model. The exact Bayesian
learning method we introduced uses recursive computation to identify the posterior optimal
partition for a node given any candidate set of parents. However, direct brute-force approach
still necessitates enumeration across such candidate sets, which is in general infeasible. It would
therefore be interesting to explore how the recursive computation over subsets of parental
outcomes could be combined with an approach based on computational logic to identify the
optimal parent sets. There has recently been a considerable interest in use of computational
logic algorithms for learning DAGs and Markov networks, such as integer programming, answer-
set programming and maximum satisfiability [7, 2, 6, 3, 16]. In particular, the maximum
satisfiability approach introduced in [3] scales surprisingly well with respect to the number
of nodes and could potentially leverage a solution to more scalable exact PDAG learning in
combination with the subset convolution.

The prior we use for partitions of CPT elements is a uniform distribution for the number of
classes in the partition. This prior penalizes most partitions that have cardinality approximately
in the middle of the range from a single class to maximum cardinality, as the Stirling number
of the second kind is maximized for them on a given set of parent configurations. The rationale
for our current prior can be explained as follows. When the number of classes in a partition is
small, the model for the conditional distribution of the node is fairly simple as the node is almost
contextually independent of its parents except in a limited set of cases. Since there are only few
different such models for a candidate set of parents, the prior penalty needs not to be as large.
Similarly, if there are many classes, i.e. the partition has almost maximal cardinality, the model
is again structurally relatively simple since nearly all combinations of the values of parents have
their respective unique conditional distributions. When the partition cardinality is neither small
nor large, the resulting model has a more diverse set of dependencies and local independencies.
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Since there are many such models, some of them may coincidentally provide a fairly good fit to
the data, and therefore, the additional penalty from the uniform prior on the number of classes
can be a useful way to prevent too flexible models to overfit the data. However, more research
is needed to establish the advantages and disadvantages of different types of possible priors for
this kind of flexible models.

The partition-based formulation chosen here to represent parameter constraints may also
prove particularly useful for inference compared with decision graphs. For instance, [19]
concluded that rule-based representations may be more efficient than tree-based and [24]
analyzed potential computational advantages resulting from CSIs. Additionally, [20] improved
the approach of [19] by using a combination of contexts and tables, leading to contextual belief
networks. As noted in [17], the underlying CSIs of a CSI-consistent partition directly correspond
to the parent contexts of a contextual belief network. By making the partitions of a PDAG CSI-
consistent, the inference method in [20] can thus be applied as such. Whether it is possible to
utilize the structure of PDAGs for inference even more efficiently is an open problem.
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Appendix A. Proof of Theorem 1
Proof. A partition is CSI-consistent if the structure of all of its classes can be explained by

local CSI statements. That is, for each class sc and each distinct pair of elements (x
(l1)
pa(v), x

(lm)
pa(v))

within that class, the implied regularity

p(xv | x(l1)
pa(v)) = p(xv | x(lm)

pa(v))

must be explained by a collection of local CSI statements. This is equivalent to saying that

there must exist a sequence of elements (x
(li)
pa(v))

m−1
i=2 in the class sc for which

d(x
(li)
pa(v), x

(li+1)
pa(v) ) = 1 for i = 1, . . . ,m− 1, (A.1)

where d(·, ·) denotes the Hamming distance. If (A.1) holds, the equality restrictions in the chain

p(xv | x(l1)
pa(v)) = p(xv | x(l2)

pa(v)) = . . . = p(xv | x(lm−1)
pa(v) ) = p(xv | x(lm)

pa(v))

can all be explained by local CSIs of the form

Xv ⊥ Xu | x(li)
pa(v)\u,

where u ∈ pa(v) is the parent with different values in configurations li and li+1. On the other
hand, if

d(x
(li)
pa(v), x

(li+1)
pa(v) ) > 1,

the same restriction can no longer be explained be such a statement. It could still be explained
by a local CSI of the form

Xv ⊥ XU | xpa(v)\U ,

where U ⊂ pa(v) and |U | > 1. However, for such a CSI to be consistent with the class, there
must exist a sequence satisfying (A.1) between the considered elements.

The (non-)existence of a sequence satisfying (A.1) between a pair of elements in a class sc
is equivalent to the corresponding node pair being (dis)connected in the class connection graph
Gc. For all pairs in the class to be connected, the corresponding class connection graph must
be connected. Consequently, all classes in a partition are CSI-consistent if and only if all the
corresponding class connection graphs are connected.
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