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Abstract

Human infection with the gastrointestinal pathogen Campylobacter jejuni is dependent upon the opportunity for zoo-

notic transmission and the ability of strains to colonize the human host. Certain lineages of this diverse organism are

more common in human infection but the factors underlying this overrepresentation are not fully understood. We

analyzed 601 isolate genomes from agricultural animals and human clinical cases, including isolates from the multihost

(ecological generalist) ST-21 and ST-45 clonal complexes (CCs). Combined nucleotide and amino acid sequence analysis

identified 12 human-only amino acid KPAX clusters among polyphyletic lineages within the common disease causing

CC21 group isolates, with no such clusters among CC45 isolates. Isolate sequence types within human-only CC21 group

KPAX clusters have been sampled from other hosts, including poultry, so rather than representing unsampled reservoir

hosts, the increase in relative frequency in human infection potentially reflects a genetic bottleneck at the point of human

infection. Consistent with this, sequence enrichment analysis identified nucleotide variation in genes with putative

functions related to human colonization and pathogenesis, in human-only clusters. Furthermore, the tight clustering

and polyphyly of human-only lineage clusters within a single CC suggest the repeated evolution of human association

through acquisition of genetic elements within this complex. Taken together, combined nucleotide and amino acid

analysis of large isolate collections may provide clues about human niche tropism and the nature of the forces that

promote the emergence of clinically important C. jejuni lineages.
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Introduction

Many bacterial species that are known as causes of gas-

troenteritis are common commensal organisms causing

little or no harm to the host species. For pathogenic strains

of these species, the pathway to disease can involve a

series of population bottlenecks. Therefore, clinical iso-

lates sampled from patients are a subset of the bacterial

population, representing strains that had the opportunity

to infect and survive new selective pressures associated

with a pathogenic lifestyle.

The common gastrointestinal pathogen Campylobacter

jejuni is widely distributed among wild and domesticated an-

imal species/reservoirs (Sheppard et al. 2011), and the major-

ity of the human infections are the result of consumption of

contaminated food (Kapperud et al. 2003; Friedman et al.

2004; Skarp et al. 2016). Campylobacter jejuni populations
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are generally structured by host source (Sheppard et al. 2010,

2011), and this has allowed the attribution of the source of

human infection based upon comparative multilocus se-

quence typing (MLST) and whole-genome characterization

of host and clinical isolates (Sheppard, Dallas, MacRae, et al.

2009; Sheppard, Dallas, Strachan, et al. 2009; Pascoe et al.

2015; Dearlove et al. 2016; Thepault et al. 2017). These stud-

ies revealed chickens as a major source of human campylo-

bacteriosis (EFSA 2015). On the assumption that all strains are

equally able to infect humans, the abundance of C. jejuni in

farmed chickens (Vidal et al. 2016) and contamination of re-

tail poultry (Wimalarathna et al. 2013) would be enough to

explain the importance of chickens as a pathogen reservoir.

However, recent studies of C. jejuni in poultry have shown

that some common chicken-associated strains are rare among

clinical isolates while others increase in relative frequency

(Yahara et al. 2017). This suggests that factors other than

simple opportunity for transmission are involved in human

infection.

In some species, such as Escherichia coli, the emergence of

pathogenic strains can be associated with the acquisition of

specific attributes which confer increased ability to cause dis-

ease or evade treatment. For example, genetic elements that

encode virulence and persistence in humans such as those

carried by phages and plasmids in E. coli or the acquisition

of antibiotic resistance in Staphylococcus(as reviewed in Kaper

et al. 2004; Pantosti et al. 2007). In some cases the acquisition

of small amount of genetic material increases the virulence, as

seen in the large scale outbreak of the Shiga-like-toxin pro-

ducing E. coli O104:H4 (Frank et al. 2011). Where specific

pathogenicity elements can be identified, it is relatively simple

to identify the agent causing an outbreak and its molecular

cause. However, in C. jejnui, traits associated with clinical

isolates not only reflect virulence but also those that confer

a fitness advantage against the various selective pressures

encountered in the poultry processing chain, such as survival

in the nonhost environment (Yahara et al. 2017).

The increasing availability of whole-genome data provides

opportunities to investigate the genomic differences underly-

ing variation in proteins and their motifs that may promote

the proliferation of particular pathogenic strains.

Epidemiological studies of C. jejuni from clinical samples and

animal reservoirs typically reveal genetically diverse popula-

tions. However, isolates belonging to CC21 and CC45 are

regularly the most common lineages isolated from human

disease (K€arenlampi et al. 2007; Levesque et al. 2008;

Mullner et al. 2009; Sheppard, Dallas, MacRae, et al. 2009;

Sheppard, Dallas, Strachan, et al. 2009; Sanad et al. 2011;

Mughini Gras et al. 2012; Sahin et al. 2012; Guyard-

Nicodeme et al. 2015). Both of these lineages have been iso-

lated from a variety of sources, including ruminants, poultry,

wild birds, domesticated companion animals, as well as envi-

ronmental samples (Sopwith et al. 2008; Sheppard et al.

2011, 2014). This ecological generalism may reflect a degree

of genotypic and phenotypic plasticity that facilitates rapid

host adaptation in a multihost environment (Read et al.

2013; Woodcock et al. 2017; Pascoe et al. 2017) but little is

known about the specific genomic variations that promote

proliferation of particular STs, within generalist lineages, in

different niches such as human hosts.

Here we combine nucleotide-based phylogenetic analysis

with amino acid sequence-based clustering to characterize

populations of C. jejuni from humans and agricultural animals,

and identify candidate genes involved in these possible host

associations. Our hypothesis was that a combined methodo-

logical approach would identify subtle host-associated differ-

ences between isolates from major generalist groups. These

analyses identified sublineages of the ST-21 complex that

were overrepresented among isolates sampled from human

disease. The putative functions of genes within human-only

amino acid clusters included those important in human path-

ogenesis, such as flagella and capsule synthesis. Our study

provides a new way of interrogating genomic data sets to

identify candidate genes in a subset of strains that may indi-

cate a population bottleneck associated with human

colonization.

Materials and Methods

Bacterial Genomes

A total of 601 C. jejuni genomes were used in this analysis,

previously published in various studies (Cody et al. 2013;

Sheppard, Didelot, Jolley, et al. 2013; Sheppard, Didelot,

Meric, et al. 2013; Pascoe et al. 2017; Yahara et al. 2017)

(supplementary table S1, Supplementary Material online). The

majority of these came from clinical isolates (n¼ 481) and the

rest from agricultural sources, either poultry (n¼ 88) or cattle

(n¼ 32). Most isolates were from the United Kingdom

(n¼ 546/601, 90.1%). A total of 134/601 (22.3%) were

from CC-45 and 467/601 (77.7%) were from CC-21-48-

206 (supplementary table S1, Supplementary Material online),

which have been shown to form a single sequence cluster in

previous studies (Sheppard, Didelot, Meric, et al. 2013). These

constituted all the sequenced genomes available to us when

this study was initiated. CC21-48-206 is henceforth collec-

tively referred to as CC21 group in this study. Sequencing

was performed on Illumina platforms, and assemblies were

performed with either Velvet (Zerbino and Birney 2008) or

Spades (Bankevich et al. 2012). Assembled DNA sequences

from various sources (supplementary table S1, Supplementary

Material online) were uploaded to a web-based database

based on the BIGSdb platform (Jolley and Maiden 2010)

which allowed archiving, whole-genome gene-by-gene se-

quence alignments and prevalence analyses. In addition, the

isolation source of all available CC21 group and CC45 isolate

records (n¼ 17,107) from the pubMLST database (https://

pubmlst.org/campylobacter/; last accessed February 07,
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2018) were obtained (October 21, 2016) and analyzed to

quantify the numbers of different STs isolated from humans

and agricultural animals and contextualize this study.

Phylogenetic Tree Inference

Sequence alignments were obtained using a gene-by-gene

approach (Sheppard et al. 2012). Briefly, the presence of

1,668 coding sequences (CDS) from the reference C. jejuni

NCTC11168 genome (NCBI accession: NC_002163.1) in all

601 genomes of this study was inferred using BLAST with the

following parameters: A gene was considered present when a

local alignment match with the reference was obtained

on>50% of the sequence length with>70% sequence iden-

tity. Using these criteria, 1,058 genes were shared by all 601

genomes from our data set, constituting the “core genome.”

Gene-by-gene alignments using MAFFT (Katoh and Standley

2013) were concatenated to create a core genome gene-by-

gene alignment that was used subsequently. For protein

trees, in-frame translation was performed using custom

scripts (supplementary file 1, Supplementary Material on-

line) for each individual gene alignment, which were then

concatenated. The resulting concatenations were used as

an input for the reconstruction of phylogenetic trees, ei-

ther using an approximation of the maximum-likelihood

algorithm implemented in FastTree2 (Price et al. 2010)

(fig. 2) or RAxML (Stamatakis 2014) (supplementary fig.

S1, Supplementary Material online). For the comparison

of nucleotide and in-frame translated phylogenetic trees,

we used RAxML (Stamatakis 2014) with GTRGAMMA and

PROTGAMMAGTR models, respectively. For amino acid

trees, the analysis used a simple search under the

GAMMA model of rate heterogeneity on the protein

data set using empirical base frequencies and estimating

a general time reversible model of amino acid

substitution.

KPAX2 Method: Bayesian Clustering Based on
Amino Acid Sequence

KPAX2 is a new Bayesian method for identifying evolutionary

signals in amino acid sequences that relate to differential evo-

lution of lineages that may be either monophyletic or poly-

phyletic, for example, resulting from the horizontal

distribution of relevant genomic elements through recombi-

nation (Pessia et al. 2015). Earlier analysis of a database of

thousands of influenza A virus H3N2 subtypes demonstrated

that the method could accurately identify antigenic clusters

determined by amino acid variation and the sequence posi-

tions relevant for the antigenic differences (Pessia et al. 2015).

The concatenated set of 601 core genome sequences corre-

sponded to 153,911 amino acid positions, harboring 17,405

polymorphic sites. KPAX2 was used with the default prior

settings, and inference was initialized with a proposal partition

of the samples obtained using the k-medoids algorithm based

on Tajima and Nei (1984) pairwise distances of protein

sequences together with the Tamura and Kumar (2002) cor-

rection for heterogeneous patterns. The initial number of

clusters was chosen by selecting the k associated with the

highest log posterior probability under the KPAX2 model. In

total, 100 partitions were then created by applying random

modifications to the initial partition obtained by the k-

medoids solution to the proposal partition. Split, merge, and

transfer operators were as previously described (Pessia et al.

2015). Each of the 100 partitions was then independently

used as a starting state for the KPAX2 posterior maximization

algorithm to ensure that the final estimate was as close to the

global posterior mode as possible. The 100 KPAX2 runs were

done in parallel on a cluster computer, where the individual

runs took approximately 1–2 weeks until convergence. The

clustering solution with the highest log posterior probability

among the 100 independent runs was chosen as the final

estimate. The source of isolates belonging to different KPAX

clusters was indicated for isolates from: human clinical only

(clinical); chicken and human clinical sources (chickenþ
clinical); cattle and human clinical sources (cattleþ clinical);

and chicken, cattle and human clinical sources

(chickenþ cattleþ clinical) (supplementary table S2,

Supplementary Material online). For each KPAX cluster, char-

acteristic amino acids were determined (Pessia et al. 2015), as

well as corresponding proteins and genes in the C. jejuni

NCTC11168 reference genome (supplementary table S3,

Supplementary Material online). This allowed for a compari-

son of KPAX clustering results with genome-wide association

study (GWAS) results to identify the genes associated with

clinical-only C. jejuni KPAX groups.

Prevalence of STs from Human-Only KPAX Clusters among
Isolates from Human and Nonhuman Sources

Total prevalence of C. jejuni STs observed to belong to

human-only KPAX clusters was quantified among samples

isolated from human and nonhuman sources (mainly poultry

and cattle) and was inferred using isolation source informa-

tion specified in a total of 17,107 CC21, CC48, CC206, and

CC45 isolate records, taken from a total of 49,598 archived

isolate records from every CC publicly available in the

pubMLST database (https://pubmlst.org/campylobacter/;

accessed October 21, 2016).

SEER Method: Genome-Wide Association Mapping

We used a k-mer enrichment method to identify, from the

nucleotide sequence data, which genomic elements were sig-

nificantly more prevalent in two groups of isolates: The

human-only KPAX clusters (group 1, n¼ 103) compared to

the remainder of the C. jejuni population (group 2, n¼ 498)

(Weinert et al. 2015; Lees et al. 2016). This binary trait analysis

was performed to ensure that eventual gene regulatory ele-

ments or accessory genes associated with the clusters would
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not remain unidentified, because the KPAX2 method is based

only on core protein sequence variation. The input assemblies

contained approximately 31 M unique k-mers with lengths

between 10 and 99 nucleotides. The following filtering steps

were applied to reduce the original k-mer input set by includ-

ing only k-mers that: 1) had>75% frequency in group 1

and<25% frequency in group 2; 2) had a chi-square associ-

ation test P-value< 10�8; and 3) had association

P-value< 10�8 in a logistic regression model with the three

first multidimensional scaling coordinates representing the

population structure correction. The multidimensional scaling

coordinates were calculated from a distance matrix based on

10,000 randomly selected k-mers from the initial set. The final

set of genome-wide significant k-mers contained 347 k-mers,

which were mapped to an annotated reference genome to

identify their contexts.

Results

STs Vary in Frequency in Human Clinical and Agricultural
Environments

Direct comparison of the relative prevalence of sequence

types was performed using the entire Campylobacter

PubMLST database. This contained a total of 49,598

entries on October 21, 2016. Of these 13,095 belonged

to the CCs 21, 48, and 206, previously shown to form a

single sequence cluster based upon whole-genome anal-

ysis, and 4,012 belonged to CC45 complex. Within the

CC21 group there were 8,382 human clinical isolates and

3,869 originating from agricultural animal sources, while

in CC45 there were 1,674 human clinical isolates and

1,685 agricultural isolates. The relative abundance of iso-

late STs belonging to CC21-48-206 and CC45 was deter-

mined (fig. 1). In both CCs, there was variation in the

relative frequency of STs isolated from human clinical

and agricultural animal samples.

Amino Acid Sequence-Based Analysis Reveals Human-
Only Subclusters

The Bayesian model-based method KPAX2 was used to clas-

sify aligned proteins into functionally divergent groups, based

upon amino acid residues of a collection of 601 genomes

representing 66 STs belonging to the CC21 group and

CC45. A total of 1,058 core CDS used in the nucleotide phy-

logeny were in silico translated and a concatenated amino

acid alignment produced for each genome-sequenced strain.

We then performed Bayesian clustering using the KPAX2 al-

gorithm, and the tree was annotated with the 36 KPAX clus-

ters identified (fig. 2). KPAX groups could be classified into

four categories depending on sources of isolates: Human only

(12 KPAX groups, 112 isolates from 20 STs), human and

chicken only (10 KPAX groups, 150 isolates from 20 STs),

human and cattle only (4 KPAX groups, 33 isolates from 13

STs), and human, chicken and cattle (10 KPAX groups, 306

isolates from 24 STs). The isolate source within each KPAX

group is shown in the supplementary table S2, Supplementary

Material online.

KPAX and nucleotide sequence clusters showed incom-

plete congruence. Amino acid clustering was polyphyletic

when superimposed on the nucleotide phylogeny (fig. 2, sup-

plementary fig. S1, Supplementary Material online) and in

some cases, divergent lineages shared the same KPAX cluster.

For example, the 138 isolates belonging to ST-21 were found

in 7 different KPAX groups containing isolates from various

sources. However, particular STs (ST-21, ST-50, ST-47, ST-44,

ST-861, and ST-190) were assigned KPAX groups encompass-

ing only isolates from humans. Examination of isolate records

in the entire pubMLST database revealed that most isolates

from STs assigned to human-only KPAX groups (276/283 iso-

lates, in 15/20 STs) have also been isolated from humans and

other host species, with only ST-6601, ST-6137, ST-5727, and

ST-2355 having been isolated solely from humans (table 1).

Obviously, KPAX clusters were not defined using the whole
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genomes of the pubMLST-archived comparative data set;

however, it is useful to contextualize KPAX-ST correlation

within a wider data set. It should be noted that the ST desig-

nation can have poor specificity in contrast to the lineages

determined from whole genomes and therefore an isolate

from a nonhuman host present in the pubMLST database

may lack the genetic elements identified in our present

analysis.

Identification of Genes with Human-Associated Amino
Acid Signatures within the CC21 Group

We sought to identify the discriminatory amino acids that

resulted in clustering of human clinical-only CC21 group iso-

lates. We identified a total of 1,213 amino acids sites which

mapped to 265 genes (supplementary table S4,

Supplementary Material online). Mapping the physical loca-

tion of these against the reference CC21 genome

NCTC11168 suggested that these loci were distributed across

the genome and not under strong linkage disequilibrium

resulting from physical proximity (fig. 3A). Interestingly, a total

of 24/265 (9.0%) genes were found to be associated with

previous GWASs (supplementary table S4, Supplementary

Material online). More specifically, 3 genes were predicted

to have a role in survival from farm to clinical disease

(Yahara et al. 2017), 8 genes to have a role in in vitro coloni-

zation of surfaces and aggregation (Pascoe et al. 2015), and

14 genes to have a role in nonhuman host adaptation

(Sheppard, Didelot, Meric, et al. 2013) (supplementary table

S4, Supplementary Material online). Although some of these

associations were sometimes weak in the corresponding stud-

ies, they were nonetheless highlighted and are consistent with

a general role in transmission and host colonization.

To confirm whether these loci were associated with a hu-

man clinical-only sublineage we also performed sequence el-

ement enrichment analysis, using SEER (Lees et al. 2016), to

identify the genetic basis of human clinical-only sublineage

strains compared with those from other host sources (fig. 3,

supplementary tables S5 and S6, Supplementary Material on-

line). A total of 181 genes (supplementary table S5,

Supplementary Material online), containing 547 enriched k-

mers, were obtained (supplementary table S6, Supplementary

Material online). These included genes that have been identi-

fied in previous association studies (supplementary table S5,

Supplementary Material online), in particular genes with pu-

tative roles in in vitro colonization of surfaces and aggrega-

tion, host adaptation and clinical disease (Sheppard, Didelot,

Meric, et al. 2013; Pascoe et al. 2015; Yahara et al. 2017).

A total of 26 genes were significantly associated with

human-only lineages in both KPAX clustering and SEER asso-

ciation analyses (fig. 3, table 2). Half of these genes have been

described as important for host colonization or pathogenesis,

nine in humans or human cell studies, and four in chicken

colonization studies (table 2), consistent with a broad role for
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FIG. 2.—Population structure of 601 C. jejuni ST-21 and ST-45 complex isolates. Isolates are labeled by KPAX group labels (integers) and colored by their

source distribution within KPAX groups: Isolates from chicken and clinical sources (yellow), cattle and clinical sources (blue), chicken, cattle and clinical

sources (pink), or clinical only (red). Polyphyletic KPAX groups, reflecting isolates in the same KPAX group but in multiple lineages on the tree, are indicated

with an asterisk. The phylogenetic tree was reconstructed from a whole-genome gene-by-gene amino acid alignment, translated in-frame, using an

approximation of the maximum-likelihood algorithm implemented in FastTree2, and using a general time reversible model.
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these genes in host adaptation and/or in multihost fitness. Of

particular note within these genes were the flagellar gene

flgH highlighted in a previous GWAS on nonchicken host

adaptation (Sheppard, Didelot, Meric, et al. 2013), two genes

(ceuC and ceuE) involved in the enterochelin iron uptake sys-

tem in C. jejuni, a gene (aspB) involved in aspartate metabo-

lism, and a gene (fdhD) encoding a formate dehydrogenase, a

function that has been highlighted as important for survival

from farm to clinical disease (Yahara et al. 2017). All five of

these genes are known to be important in the invasion of

mammalian cells and/or human colonization (Palyada et al.

2004; Guerry 2007; Novik et al. 2010; Sheppard, Didelot,

Meric, et al. 2013; Yahara et al. 2017).

Discussion

An important aim in zoonotic pathogen research is to identify

genetic and functional variations associated with lineages or

sublineages that cause human infection. Comparative analysis

of nucleotide sequence variation across the genome has im-

proved understanding of the epidemiology and evolution of

Campylobacter (Sheppard, Didelot, Jolley, et al. 2013; Gilbert

et al. 2016; Llarena et al. 2016). Although this has provided a

basis for identifying candidate genes with potential functional

significance (Morley et al. 2015; Pascoe et al. 2015; Yahara

et al. 2017), straight forward genome analysis often ignores

factors relating translation and the production of specific

amino acid chains and proteins that may be important in

host adaptation or pathogenicity. For example, although the

four nucleotides can form 64 different triplets they only en-

code 20 amino acids. This means that the same amino acid

can be encoded by different triplets, typically with variation at

the third base, and divergent genomes may have convergent

amino acid sequences that are potentially functionally impor-

tant in host adaptation or pathogenesis. Analysis of encoded

amino acid sequences in this study identified polyphyletic nu-

cleotide sequence clusters within the CC21 group that clus-

tered together within the same amino acid sequence clusters.

These convergent human-only amino acid KPAX clusters, in

divergent genomic backgrounds, may have been overlooked

using conventional nucleotide sequence-based approaches.

Comparative analysis of the nucleotide sequence of the

601 C. jejuni genomes in this study identified STs belonging

to the CC21 group and CC45 that were reported to have

Table 1

Prevalence of isolates from STs found in human-only KPAX groups in human and nonhuman sources

KPAX Group ST Total Number of

Isolates in Our Study

Associated Hosts Prevalence in

Human Hosts

in pubMLST (%)a

Prevalence in

Nonhuman Hosts in

pubMLST (%)a

KPAX-8 ST-21* 138 Human, chicken, cattle 66.5 22.4

KPAX-9 ST-475 5 Human 75.0 19.4

ST-6601# 1 Human 100.0 0.0

KPAX-19 ST-50* 100 Human, chicken 62.8 31.4

ST-5727# 2 Human 100.0 0.0

ST-2355# 1 Human 100.0 0.0

KPAX-20 ST-47* 3 Human 79.2 9.4

ST-5242# 1 Human 100.0 0.0

KPAX-21 ST-572 4 Human 82.7 11.8

ST-5138 1 Human 66.7 33.3

KPAX-26 ST-44* 6 Human 73.2 22.3

KPAX-27 ST-50* 100 Human, chicken 62.8 31.4

KPAX-28 ST-21* 138 Human, chicken, cattle 66.5 22.4

ST-861* 4 Human 86.2 10.3

ST-5018 3 Human 90.5 4.8

ST-190* 2 Human 54.7 43.1

ST-141 1 Human 72.0 24.0

KPAX-30 ST-222 3 Human 78.9 21.1

KPAX-32 ST-122 4 Human 78.2 13.9

KPAX-34 ST-21* 138 Human, chicken, cattle 66.5 22.4

ST-50* 100 Human, chicken 62.8 31.4

ST-3769 1 Human 83.3 16.7

ST-520 1 Human 46.1 51.3

KPAX-35 ST-6137# 2 Human 100.0 0.0

NOTE.—Asterisks indicate STs that also found in other nonhuman-only KPAX groups. Dashes indicate STs that have never been isolated from nonhuman sources in our data
set or pubMLST.

apubMLST (https://pubmlst.org/campylobacter/) as accessed on October 21, 2016.
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been isolated at different frequencies from agricultural animal

and human sources lineages. This is consistent with other

population genomic studies, where the variation in relative

abundance has been explained by the different capacity of

certain strains to survive through the poultry production chain

at atmospheric oxygen concentrations (Yahara et al. 2017).

Asymptomatic carriage of C. jejuni is not thought to be com-

mon in humans in industrialized countries (Lee et al. 2013).

Therefore, under a simple transmission model, amino acid

clusters would be expected to be present in both reservoir

animal and infected human hosts. For this reason, the exis-

tence of strongly human-only amino acid KPAX clusters is

unexpected. There are two possible explanations. First, iso-

lates assigned to human-only KPAX clusters are derived

from a source that is not represented in our isolate collection,

which has not been captured by the sampling of isolates used

in this study. Second, there are isolates that share amino acid

clusters within CC21 group C. jejuni in our data set that in-

crease in relative frequency in humans, compared with the

isolates from other hosts. Additionally, it is possible that

asymptomatic carriage of Campylobacter may be underesti-

mated and underreported (Calva et al. 1988; Louwen et al.

2012; Lee et al. 2013; Islam et al. 2017). These factors could

influence the evolution and population structure of symptom-

atic bacteria.

Examination of isolate records in the entire pubMLST data-

base revealed that 97% of the isolates assigned to human-

only amino acid KPAX clusters are of STs that have been iso-

lated from other host species as well as humans (table 1).

Notably, only five STs from human-only KPAX groups (corre-

sponding to 7/276 isolates in our data set) have never been

reported in nonhuman hosts, either in our data set or from

isolate records in pubMLST. On the basis of the known sour-

ces of C. jejuni in human infection—including CC21 group

isolates (Sheppard, Dallas, MacRae, et al. 2009; Sheppard,

Dallas, Strachan, et al. 2009), the close similarity between C.

jejuni populations on food and those from clinical samples

(Kittl et al. 2013), and the presence of STs belonging to

human-only amino acid KPAX clusters among agricultural

hosts in pubMLST, it is unlikely that they indicate an unknown
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host source population, although this cannot be ruled out in

this study.

Our results are therefore consistent with the increase in

relative frequency of particular amino acid sequence subclus-

ters that are uncommon in animal hosts, among isolates from

humans. Host colonization potential is influenced by the

adaptive genomic variations that exist before and after trans-

mission to the new host species (Geoghegan et al. 2016). In

both cases, population bottlenecks reduce the genetic vari-

ance in the population at interhost transmission which would

account for the increased relative frequency of human-only

amino acid KPAX clusters. It remains difficult to differentiate

genetic changes associated with bottlenecking and drift from

adaptive physiological changes that directly impact pathogen-

esis, such as human tissue tropism and virulence.

Furthermore, human passage can induce genetic variation

in contingency genes coding surface structure through frame

shifts and phase variation (Bayliss et al. 2012; Revez et al.

2013; Thomas et al. 2014). However, the sharing of amino

acid sequence clusters by polyphyletic lineages is evidence of

homoplasy and investigating the putative function of these

genes may provide clues about their potential role in human

colonization. Human-only KPAX clusters are present in every

major lineage within the CC21 group (fig. 2) and are notably

absent among CC45 isolates. This asymmetry cannot be

explained by an insufficient sample size from the CC45 pop-

ulation in our data set and may suggest that, despite being an

efficient human colonizer, CC45 strains may lack the suitable

genetic background for acquisition of genomic elements that

are associated with elevated human colonization that we ob-

serve in the CC21 group. Further analysis of larger sample

sets, potentially including phenotypic analyses, is needed to

confirm this.

Genome-wide association methods that have recently

been applied to bacteria (Sheppard, Didelot, Meric, et al.

2013) allow the investigation of genetic variation that under-

lies important phenotypes. By quantifying the nucleotide se-

quence that was enriched in isolates from humans (Lees et al.

2016) across the genomes, we were able to investigate the

putative function of genes with human-only amino acid KPAX

clusters. A total of 26 genes were identified (table 2), half of

which have been previously linked to host colonization or

pathogenesis, nine in humans or human cells, four in chicken.

For example, flgH, a gene associated with flagellar assembly

(table 2) and otherwise associated with adaptation in a mam-

malian host (Sheppard, Didelot, Meric, et al. 2013). Flagellar

motility has been shown to be important for human and

chicken colonization, and possibly for the secretion of viru-

lence factors into host cells (Guerry 2007). Genes directly in-

volved in host colonization also included ceuCE, involved in

enterochelin uptake (table 2). The uptake of siderophore has

been described as a virulence/host colonization trait in

Campylobacter (Richardson and Park 1995), and a ceuE mu-

tant has been shown to be altered in chicken colonization

abilities (Palyada et al. 2004). Additionally, the cdsA gene is

located in the genomic region of known maf adhesins, in-

volved in survival and host colonization (Karlyshev et al.

2002). Knockout mutants of cj0005c, an uncharacterized ox-

idoreductase, have been shown to be strongly impaired in

infection abilities and adherence to human Caco2 cells

in vitro (Tareen et al. 2011), whereas a neighboring gene,

cj0006, encoding a putative transporter, has been shown in

global transcriptomic studies to be overexpressed in vivo

when C. jejuni infects chicken (Hu et al. 2014). Finally, the

tyrS gene, predicted to encode a tyrosyl-tRNA synthetase, has

been observed to be overexpressed in a poor chicken colo-

nizer strain of C. jejuni (Seal et al. 2007). Additionally, it has

been associated with mammalian (cattle) adaptation in a pre-

vious GWAS from our laboratory (Sheppard, Didelot, Meric,

et al. 2013).

Genes predicted to have a role in metabolism were also

highlighted. The ackA and aspB genes are involved in acetate

and aspartate metabolism, respectively, and have been shown

in mutagenesis studies to be important for entry into human

epithelial cells in vitro (Novik et al. 2010). The fdhD gene

encoding a formate dehydrogenase was also associated

with isolates belonging to human-only amino acid clusters.

Formate metabolism has been previously implicated in host

association and survival in the food production chain from

farm to human disease (Yahara et al. 2017). The racR gene

which regulates fumarate utilization in a low-oxygen environ-

ment also displayed human-associated variation and racR-de-

ficient mutants have shown reduced chicken colonization

in vivo (Bras et al. 1999; van der Stel et al. 2015). Other genes

with variation associated with the CC21 human amino acid

clusters included the dnaX gene that encodes a DNA poly-

merase and is a marker for the campylobacteriosis sequelae

Guillain–Barre syndrome (Godschalk et al. 2006) and trpC that

encodes an indole-3-glycerol-phosphate synthase in a geno-

mic region important for human cell hyperinvasiveness (Javed

et al. 2010).

Genomic variation associated with clinical C. jejuni isolates

includes elements associated with the primary host

(Sheppard, Didelot, Meric, et al. 2013) and the food produc-

tion chain (Yahara et al. 2017), as well as variation which

confers an adaptive advantage to human colonization and

may directly impact pathogenesis (Thompson and Gaynor

2008). Evidence of genetic bottlenecks and selection fostered

by this complex fitness landscape will not only be reflected in

nucleotide sequence variation but also in features, such as

gene order, distribution of CDS on leading and lagging

strands, GC skew, and codon usage (Bentley and Parkhill

2004; Rocha 2004). By combining analysis of nucleotide se-

quence and amino acid variation we were able to identify a

subset of human-associated C. jejuni. As these isolates are

found in nonhuman hosts, we interpret this as evidence of

a genetic bottleneck that increases the relative frequency of

certain strains in the infected individuals. Although larger scale

M�eric et al. GBE

772 Genome Biol. Evol. 10(3):763–774 doi:10.1093/gbe/evy026 Advance Access publication February 14, 2018
Downloaded from https://academic.oup.com/gbe/article-abstract/10/3/763/4857209
by University of Lapland.fi user
on 27 March 2018



studies are necessary to confirm a potential adaptive role for

the human-associated variation, our analysis has identified a

group of human-pathogenic C. jejuni that do not exhibit typ-

ical source-sink epidemiology, potentially reflecting human

tissue tropism or virulence.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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