196 research outputs found

    Identification of the proteins, including MAGEG1, that make up the human SMC5-6 protein complex

    Get PDF
    The SMC protein complexes play important roles in chromosome dynamics. The function of the SMC5-6 complex remains unclear, though it is involved in resolution of different DNA structures by recombination. We have now identified and characterized the four non-SMC components of the human complex and in particular demonstrated that the MAGEG1 protein is part of this complex. MAGE proteins play important but as yet undefined roles in carcinogenesis, apoptosis, and brain development. We show that, with the exception of the SUMO ligase hMMS21/hNSE2, depletion of any of the components results in degradation of all the other components. Depletion also confers sensitivity to methyl methanesulfonate. Several of the components are modified by sumoylation and ubiquitination

    Gravity Dual of Gauge Theory on S^2 x S^1 x R

    Full text link
    We (numerically) construct new static, asymptotically AdS solutions where the conformal infinity is the product of time and S^2 x S^1. There always exist a family of solutions in which the S^1 is not contractible and, for small S^1, there are two additional families of solutions in which the S^1 smoothly pinches off. This shows that (when fermions are antiperiodic around the S^1) there is a quantum phase transition in the gauge theory as one decreases the radius of the S^1 relative to the S^2. We also compare the masses of our solutions and argue that the one with lowest mass should minimize the energy among all solutions with conformal boundary S^2 x S^1 x R. This provides a new positive energy conjecture for asymptotically locally AdS metrics. A simple analytic continuation produces AdS black holes with topology S^2 x S^1.Comment: 17 pages, 4 figures, v2: minor changes, added reference

    Scalability of quantum computation with addressable optical lattices

    Get PDF
    We make a detailed analysis of error mechanisms, gate fidelity, and scalability of proposals for quantum computation with neutral atoms in addressable (large lattice constant) optical lattices. We have identified possible limits to the size of quantum computations, arising in 3D optical lattices from current limitations on the ability to perform single qubit gates in parallel and in 2D lattices from constraints on laser power. Our results suggest that 3D arrays as large as 100 x 100 x 100 sites (i.e., ∼106\sim 10^6 qubits) may be achievable, provided two-qubit gates can be performed with sufficiently high precision and degree of parallelizability. Parallelizability of long range interaction-based two-qubit gates is qualitatively compared to that of collisional gates. Different methods of performing single qubit gates are compared, and a lower bound of 1×10−51 \times 10^{-5} is determined on the error rate for the error mechanisms affecting 133^{133}Cs in a blue-detuned lattice with Raman transition-based single qubit gates, given reasonable limits on experimental parameters.Comment: 17 pages, 5 figures. Accepted for publication in Physical Review

    Black strings with negative cosmological constant: inclusion of electric charge and rotation

    Get PDF
    We generalize the vacuum static black strings with negative cosmological constant recently discussed in literature, by including an electromagnetic field. These higher-dimensional configurations have no dependence on the `compact' extra dimension, and their boundary topology is the product of time and Sd−3×S1S^{d-3}\times S^1 or Hd−3×S1H^{d-3}\times S^1. Rotating generalizations of the even dimensional black string configurations are considered as well. Different from the static, neutral case, no regular limit is found for a vanishing event horizon radius. We explore numerically the general properties of such solutions and, using a counterterm prescription, we compute their conserved charges and discuss their thermodynamics. We find that the thermodynamics of the black strings follows the pattern of the corresponding black hole solutions in AdS backgrounds.Comment: 35 pages, 8 figures, final versio

    Charged-rotating black holes and black strings in higher dimensional Einstein-Maxwell theory with a positive cosmological constant

    Full text link
    We present arguments for the existence of charged, rotating black holes in d=2N+1d=2N+1 dimensions, with d≥5d\geq 5 with a positive cosmological constant. These solutions posses both, a regular horizon and a cosmological horizon of spherical topology and have NN equal-magnitude angular momenta. They approach asymptotically the de Sitter spacetime background. The counterpart equations for d=2N+2d=2N+2 are investigated, by assuming that the fields are independant of the extra dimension yy, leading to black strings solutions. These solutions are regular at the event horizon. The asymptotic form of the metric is not the de Sitter form and exhibit a naked singularity at finite proper distance.Comment: 21 pages, 9 figure

    Study protocol: A multi-centre, double blind, randomised, placebo-controlled, parallel group, phase II trial (RIDD) to determine the efficacy of intra-nodular injection of anti-TNF to control disease progression in early Dupuytren’s disease, with an embedded dose response study. [version 2; peer review: 2 approved]

    Get PDF
    Dupuytren’s disease is a common fibrotic condition of the hand affecting 4% of the population and causes the fingers to curl irreversibly into the palm. It has a strong familial tendency, there is no approved treatment for early stage disease, and patients with established digital contractures are most commonly treated by surgery. This is associated with prolonged recovery, and less invasive techniques have high recurrence rates. The myofibroblasts, the cells responsible for the excessive matrix deposition and contraction, are aggregated in nodules. Using excised diseased and control human tissue, we found that immune cells interspersed amongst the myofibroblasts secrete cytokines. Of these, only tumour necrosis factor (TNF) promoted the development of myofibroblasts. The clinically approved anti-TNF agents led to inhibition of the myofibroblast phenotype in vitro. This clinical trial is designed to assess the efficacy of the anti-TNF agent adalimumab on participants with early disease. The first part is a dose-ranging study where nodules of participants already scheduled for surgery will be injected with either placebo (saline) or varying doses of adalimumab. The excised tissue will then be analysed for markers of myofibroblast activity. The second part of the study will recruit participants with early stage disease. They will be randomised 1: 1 to receive either adalimumab or placebo at 3 month intervals over 1 year and will then be followed for a further 6 months. Outcome measures will include nodule hardness, size and disease progression. The trial will also determine the cost-effectiveness of adalimumb treatment for this group of participants

    On the uniqueness and global dynamics of AdS spacetimes

    Get PDF
    We study global aspects of complete, non-singular asymptotically locally AdS spacetimes solving the vacuum Einstein equations whose conformal infinity is an arbitrary globally stationary spacetime. It is proved that any such solution which is asymptotically stationary to the past and future is itself globally stationary. This gives certain rigidity or uniqueness results for exact AdS and related spacetimes.Comment: 18pp, significant revision of v
    • …
    corecore