50 research outputs found

    Critical Review of Historic Literature Concerning Traditional Lime and Earth-Lime Mortars

    Get PDF
    A review of historic knowledge and understanding concerning the manipulation of lime and earth-lime mortars; the uses to which they were put, as set out in historic texts from the UK, Ireland, North America, France and Spain, as well as from Ancient Rome. Time-span: 160 BC to 1962. These tell a consistent story very different to that told during the Lime Revival in the UK after 1975. The ubiquitous mortars of construction were earth-lime and hot mixed air lime, with and without pozzolans. Natural Hydraulic Limes have minimal historic precedence for the uses to which they have been put over the last 20 years or so. Lime putty had minimal historic precedence as a binder before the 20thC. This dissertation sets out historic knowledge and understanding of traditional mortars and provides a platform for the essential re-booting of the lime revival and speaks to a paradigm shift in understanding and practice over recent years, a shift inspired primarily by the practical experience of stonemasons and conservators who have been working with traditional, like-for-like and compatible materials over a number of years

    Light Trap Manipulation and Its Potential Use in Quantum Computing

    Get PDF
    During winter quarter 2007, the light polarization dependence of light traps used in quantum computing was researched. Throughout the quarter, a Mathematica program that simulates the trapping potential of light traps was modified; it now takes into account the polarization of light used, as well as the internal state of atoms used in the light traps. The goal for the next quarter, spring 2007, was to use the program that was generated to simulate the trapping potentials of varying parameters. This research was conducted to deduce whether there is any possible way to implement the light polarization dependence of light traps in quantum computing. More specifically, the intent was to investigate potential ways to create a two-qubit gate using the light polarization dependence of the light traps

    Evolution of flower color pattern through selection on regulatory small RNAs

    Get PDF
    Small RNAs (sRNAs) regulate genes in plants and animals. Here, we show that population-wide differences in color patterns in snapdragon flowers are caused by an inverted duplication that generates sRNAs. The complexity and size of the transcripts indicate that the duplication represents an intermediate on the pathway to microRNA evolution. The sRNAs repress a pigment biosynthesis gene, creating a yellow highlight at the site of pollinator entry. The inverted duplication exhibits steep clines in allele frequency in a natural hybrid zone, showing that the allele is under selection. Thus, regulatory interactions of evolutionarily recent sRNAs can be acted upon by selection and contribute to the evolution of phenotypic diversity

    Selection and gene flow shape genomic islands that control floral guides

    Get PDF
    Genomes of closely-related species or populations often display localized regions of enhanced relative sequence divergence, termed genomic islands. It has been proposed that these islands arise through selective sweeps and/or barriers to gene flow. Here, we genetically dissect a genomic island that controls flower color pattern differences between two subspecies of Antirrhinum majus, A.m.striatum and A.m.pseudomajus, and relate it to clinal variation across a natural hybrid zone. We show that selective sweeps likely raised relative divergence at two tightly-linked MYB-like transcription factors, leading to distinct flower patterns in the two subspecies. The two patterns provide alternate floral guides and create a strong barrier to gene flow where populations come into contact. This barrier affects the selected flower color genes and tightlylinked loci, but does not extend outside of this domain, allowing gene flow to lower relative divergence for the rest of the chromosome. Thus, both selective sweeps and barriers to gene flow play a role in shaping genomic islands: sweeps cause elevation in relative divergence, while heterogeneous gene flow flattens the surrounding "sea," making the island of divergence stand out. By showing how selective sweeps establish alternative adaptive phenotypes that lead to barriers to gene flow, our study sheds light on possible mechanisms leading to reproductive isolation and speciation

    Quarkonium dissociation by anisotropy

    Get PDF
    We compute the screening length for quarkonium mesons moving through an anisotropic, strongly coupled N=4 super Yang-Mills plasma by means of its gravity dual. We present the results for arbitrary velocities and orientations of the mesons, as well as for arbitrary values of the anisotropy. The anisotropic screening length can be larger or smaller than the isotropic one, and this depends on whether the comparison is made at equal temperatures or at equal entropy densities. For generic motion we find that: (i) mesons dissociate above a certain critical value of the anisotropy, even at zero temperature; (ii) there is a limiting velocity for mesons in the plasma, even at zero temperature; (iii) in the ultra-relativistic limit the screening length scales as (1v2)ϵ(1-v^2)^\epsilon with \epsilon =1/2, in contrast with the isotropic result \epsilon =1/4.Comment: 39 pages, 26 figures; v2: minor changes, added reference

    Holographic Renormalization for z=2 Lifshitz Space-Times from AdS

    Full text link
    Lifshitz space-times with critical exponent z=2 can be obtained by dimensional reduction of Schroedinger space-times with critical exponent z=0. The latter space-times are asymptotically AdS solutions of AdS gravity coupled to an axion-dilaton system and can be uplifted to solutions of type IIB supergravity. This basic observation is used to perform holographic renormalization for 4-dimensional asymptotically z=2 locally Lifshitz space-times by Scherk-Schwarz dimensional reduction of the corresponding problem of holographic renormalization for 5-dimensional asymptotically locally AdS space-times coupled to an axion-dilaton system. We can thus define and characterize a 4-dimensional asymptotically locally z=2 Lifshitz space-time in terms of 5-dimensional AdS boundary data. In this setup the 4-dimensional structure of the Fefferman-Graham expansion and the structure of the counterterm action, including the scale anomaly, will be discussed. We find that for asymptotically locally z=2 Lifshitz space-times obtained in this way there are two anomalies each with their own associated nonzero central charge. Both anomalies follow from the Scherk--Schwarz dimensional reduction of the 5-dimensional conformal anomaly of AdS gravity coupled to an axion-dilaton system. Together they make up an action that is of the Horava-Lifshitz type with nonzero potential term for z=2 conformal gravity.Comment: 32 pages, v2: modified discussion of the central charge

    A General Black String and its Microscopics

    Get PDF
    Using G2(2) dualities we construct the most general black string solution of minimal five-dimensional ungauged supergravity. The black string has five independent parameters, namely, the magnetic one-brane charge, smeared electric zero-brane charge, boost along the string direction, energy above the BPS bound, and rotation in the transverse space. In one extremal limit it reduces to the three parameter supersymmetric string of five-dimensional minimal supergravity; in another extremal limit it reduces to the three parameter non-supersymmetric extremal string of five-dimensional minimal supergravity. It also admits an extremal limit when it has maximal rotation in the four-dimensional transverse space. The decoupling limit of our general black string is a BTZ black hole times a two sphere. The macroscopic entropy of the string is reproduced by the Maldacena-Strominger-Witten CFT in appropriate ranges of the parameters. When the pressureless condition is imposed, our string describes the infinite radius limit of the most general class of black rings of minimal supergravity. We discuss implications our solution has for extremal and non-extremal black rings of minimal supergravity.Comment: 35 pages; 3 figures; v2 section 4.1.1 rewritten + minor changes + ref adde

    Field theories with anisotropic scaling in 2D, solitons and the microscopic entropy of asymptotically Lifshitz black holes

    Full text link
    Field theories with anisotropic scaling in 1+1 dimensions are considered. It is shown that the isomorphism between Lifshitz algebras with dynamical exponents z and 1/z naturally leads to a duality between low and high temperature regimes. Assuming the existence of gap in the spectrum, this duality allows to obtain a precise formula for the asymptotic growth of the number of states with a fixed energy which depends on z and the energy of the ground state, and reduces to the Cardy formula for z=1. The holographic realization of the duality can be naturally inferred from the fact that Euclidean Lifshitz spaces in three dimensions with dynamical exponents and characteristic lengths given by z, l, and 1/z, l/z, respectively, are diffeomorphic. The semiclassical entropy of black holes with Lifshitz asymptotics can then be recovered from the generalization of Cardy formula, where the ground state corresponds to a soliton. An explicit example is provided by the existence of a purely gravitational soliton solution for BHT massive gravity, which precisely has the required energy that reproduces the entropy of the analytic asymptotically Lifshitz black hole with z=3. Remarkably, neither the asymptotic symmetries nor central charges were explicitly used in order to obtain these results.Comment: 17 pages, no figures, references corrected and update
    corecore