11 research outputs found

    Capripoxvirus tissue tropism and shedding: A quantitative study in experimentally infected sheep and goats

    Get PDF
    AbstractSheeppox virus and goatpox virus cause systemic disease in sheep and goats that is often associated with high morbidity and high mortality. To increase understanding of the pathogenesis of these diseases, we undertook quantitative time-course studies in sheep and goats following intradermal inoculation of Nigerian sheeppox virus or Indian goatpox virus in their respective homologous hosts. Viremia, determined by virus isolation and real-time PCR, cleared within 2 to 3 weeks post inoculation. Peak shedding of viral DNA and infectious virus in nasal, conjunctival and oral secretions occurred between 10 and 14 days post inoculation, and persisted at low levels for up to an additional 3 to 6 weeks. Although gross lesions developed in multiple organ systems, highest viral titers were detected in skin and in discrete sites within oronasal tissues and gastrointestinal tract. The temporal distribution of infectious virus and viral DNA in tissues suggests an underlying pathogenesis that is similar to smallpox and monkeypox where greatest viral replication occurs in the skin. Our data demonstrate that capripoxvirus infections in sheep and goats provide additional and convenient models which are suitable not only for evaluation of poxvirus-specific vaccine concepts and therapeutics, but also study of poxvirus–host interactions

    Obesity-induced insulin resistance in human skeletal muscle is characterised by defective activation of p42/p44 MAP kinase

    Get PDF
    Insulin resistance (IR), an impaired cellular, tissue and whole body response to insulin, is a major pathophysiological defect of type 2 diabetes mellitus. Although IR is closely associated with obesity, the identity of the molecular defect(s) underlying obesity-induced IR in skeletal muscle remains controversial; reduced post-receptor signalling of the insulin receptor substrate 1 (IRS1) adaptor protein and downstream effectors such as protein kinase B (PKB) have previously been implicated. We examined expression and/or activation of a number of components of the insulin-signalling cascade in skeletal muscle of 22 healthy young men (with body mass index (BMI) range, 20–37 kg/m2). Whole body insulin sensitivity (M value) and body composition was determined by the hyperinsulinaemic (40 mU. min−1.m−2.), euglycaemic clamp and by dual energy X-ray absorptiometry (DEXA) respectively. Skeletal muscle (vastus lateralis) biopsies were taken before and after one hour of hyperinsulinaemia and the muscle insulin signalling proteins examined by western blot and immunoprecipitation assay. There was a strong inverse relationship between M-value and BMI. The most striking abnormality was significantly reduced insulin-induced activation of p42/44 MAP kinase, measured by specific assay, in the volunteers with poor insulin sensitivity. However, there was no relationship between individuals' BMI or M-value and protein expression/phosphorylation of IRS1, PKB, or p42/44 MAP kinase protein, under basal or hyperinsulinaemic conditions. In the few individuals with poor insulin sensitivity but preserved p42/44 MAP kinase activation, other signalling defects were evident. These findings implicate defective p42/44 MAP kinase signalling as a potential contributor to obesity-related IR in a non-diabetic population, although clearly multiple signalling defects underlie obesity associated IR

    Tailored design of protein nanoparticle scaffolds for multivalent presentation of viral glycoprotein antigens

    No full text
    Multivalent presentation of viral glycoproteins can substantially increase the elicitation of antigen-specific antibodies. To enable a new generation of anti-viral vaccines, we designed self-assembling protein nanoparticles with geometries tailored to present the ectodomains of influenza, HIV, and RSV viral glycoprotein trimers. We first de novo designed trimers tailored for antigen fusion, featuring N-terminal helices positioned to match the C termini of the viral glycoproteins. Trimers that experimentally adopted their designed configurations were incorporated as components of tetrahedral, octahedral, and icosahedral nanoparticles, which were characterized by cryo-electron microscopy and assessed for their ability to present viral glycoproteins. Electron microscopy and antibody binding experiments demonstrated that the designed nanoparticles presented antigenically intact prefusion HIV-1 Env, influenza hemagglutinin, and RSV F trimers in the predicted geometries. This work demonstrates that antigen-displaying protein nanoparticles can be designed from scratch, and provides a systematic way to investigate the influence of antigen presentation geometry on the immune response to vaccination

    Tailored design of protein nanoparticle scaffolds for multivalent presentation of viral glycoprotein antigens.

    No full text
    Multivalent presentation of viral glycoproteins can substantially increase the elicitation of antigen-specific antibodies. To enable a new generation of anti-viral vaccines, we designed self-assembling protein nanoparticles with geometries tailored to present the ectodomains of influenza, HIV, and RSV viral glycoprotein trimers. We first de novo designed trimers tailored for antigen fusion, featuring N-terminal helices positioned to match the C termini of the viral glycoproteins. Trimers that experimentally adopted their designed configurations were incorporated as components of tetrahedral, octahedral, and icosahedral nanoparticles, which were characterized by cryo-electron microscopy and assessed for their ability to present viral glycoproteins. Electron microscopy and antibody binding experiments demonstrated that the designed nanoparticles presented antigenically intact prefusion HIV-1 Env, influenza hemagglutinin, and RSV F trimers in the predicted geometries. This work demonstrates that antigen-displaying protein nanoparticles can be designed from scratch, and provides a systematic way to investigate the influence of antigen presentation geometry on the immune response to vaccination

    Experience the Future: Papers from the Second National Symposium on Experiential Education in Law, Part VI, 'The Role of Practitioners in Experiential Education'

    No full text
    corecore