140 research outputs found

    A Quali-quantitative evaluation approach to pedodiversity by multivariate analysis: introduction to the concept of "pedocharacter"

    Get PDF
    A model has been developed for the interpretation of the complexity of pedological systems; this is referred to as “pedocharacter”. The main aim of the model was to reduce the variables able to define soils and their relationships with the environment through the following quali-quantitative approach: i) definition of a fair number of qualitative characters; and ii) development of an analytic function, defined as “Land Relevance of the Factor”

    Pedotechniques strategies to improve soil resilience against the impact of irrigation by municipal wastewater: using zeolitized tuffs as soil amendments

    Get PDF
    A research was started aiming at evaluating the possible use of natural zeolites as exchange conditioners to improve and make durable the soil resilience against the adverse effects of the use of anomalous wastewater, for irrigation purposes. To satisfy such aims, two zeolitized tuffs (ZTs), viz. a Neapolitan yellow tuff (NYT) and a clinoptilolite bearing tuff (ZCL), were tested as pedotechnical materials to improve soil resilience against the impact of treatment by a ‘dirty’ municipal wastewater (DMW)

    Persistence and intensity of soil water repellency from soils with andic properties from the Campania region (Southwest, Italy) under different forest types

    Get PDF
    Congreso celebrado del 2-6, julio, 2012, en Fiera del Levante, Bari, Italia.Soil water repellency (SWR) is a property of many soils that is getting more and more interesting for the scientific community, because of its consequences on soil erosion risk, runoff or infiltration rates and even plant ecology. The presence of hydrophobic organic acids released by roots and plant tissues, fungal activity, organic matter mineralization rates, or wildfires are considered the main causes of SWR. Some of the consequences of SWR are reduced soil infiltration rates, enhanced runoff flow and soil erosion. Significance of these effects depends upon the severity and spatial variability of SWR. SWR is often associated to vegetation types, although it cannot be assumed that certain species always induce water repellency under natural conditions. Because of resins, waxes and aromatic oils in their tissues, evergreen trees as eucalyptus and coniferous are usually associated with soil hydrophobicity, although it has been found also in a variety of soils, climates and vegetation types. But the relationship between water repellent soils and plant species is not always one-to-one. Soil properties as texture, aggregation, acidity, microbiome and other are also implied in the development of hydrophobicity. Regarding organic matter, several authors have reported inconsistent results after studying the relationship between soil organic matter content and SWR. A possible explanation for this is that quality of organic matter is more important than content. Consequently, it is necessary to investigate the role that organic matter content and properties play in the development of hydrophobicity in different soil and vegetation types. The objective of this research is the study the relationship between SWR and organic matter properties in andic soils from the Campania region (SW Italy) under different vegetation types.Peer reviewe

    Soil Quality Characterization of Mediterranean Areas under Desertification Risk for the Implementation of Management Schemes Aimed at Land Degradation Neutrality

    Get PDF
    Soil is a key component of ecosystems as it provides fundamental ecosystem functions and services, first of all supporting primary productivity, by physical, chemical and biological interaction with plants. However, soil loss and degradation are at present two of the most critical environmental issues. This phenomenon is particularly critical in Mediterranean areas, where inappropriate land management, in combination with the increasingly harshening of climatic conditions due to Climate Change, is leading to significant land degradation and desertification and is expected to worsen in the future, leading to economic and social crisis. In such areas, it is of fundamental importance to apply sustainable management practices, as conservation/restoration measures, to achieve Land Degradation Neutrality. This approach is at the core of the LIFE project Desert-Adapt “Preparing desertification areas for increased climate change” which is testing a new framework of sustainable land management strategies based on the key concept that the maintenance of ecosystems quality is necessarily connected to economic and social security in these fragile areas. The project will test adaptation strategies and measures in 10 sites of three Mediterranean areas under strong desertification risk, Alentejo in Portugal, Extremadura in Spain and Sicily in Italy. We present the baseline data of soil quality analysis from 32 sites in the 10 study areas of the project. Key drivers of soil quality and quantity were identified and used as basis to select sustainable management strategies focused on the maintenance, improvement and/or recovery of soil-based ecosystem services, with particular attention to climate change adaptation and land productivity. The final objective of the project is to demonstrate, according to the LDN approach, the best adaptation strategies to recover degraded areas from low-productive systems into resource-efficient and low-carbon economies to preserve ecosystem quality and booster economy and social securit

    Critical range of soil organic carbon in southern Europe lands under desertification risk

    Get PDF
    Soil quality is fundamental for ecosystem long term functionality, productivity and resilience to current climatic changes. Despite its importance, soil is lost and degraded at dramatic rates worldwide. In Europe, the Mediterranean areas are a hotspot for soil erosion and land degradation due to a combination of climatic conditions, soils, geomorphology and anthropic pressure. Soil organic carbon (SOC) is considered a key indicator of soil quality as it relates to other fundamental soil functions supporting crucial ecosystem services. In the present study, the functional relationships among SOC and other important soil properties were investigated in the topsoil of 38 sites under different land cover and management, distributed over three Mediterranean regions under strong desertification risk, with the final aim to define critical SOC ranges for fast loss of important soil functionalities. The study sites belonged to private and public landowners seeking to adopt sustainable land management practices to support ecosystem sustainability and productivity of their land. Data showed a very clear relationship between SOC concentrations and the other analyzed soil properties: total nitrogen, bulk density, cation exchange capacity, available water capacity, microbial biomass, C fractions associated to particulate organic matter and to the mineral soil component and indirectly with net N mineralization. Below 20 g SOC kg−1, additional changes of SOC concentrations resulted in a steep variation of all the analyzed soil indicators, an order of magnitude higher than the changes occurring between 50 and 100 g SOC kg−1 and 3–4 times the changes observed at 20–50 g SOC kg−1. About half of the study sites showed average SOC concentration of the topsoil centimetres <20 g SOC kg−1. For these areas the level of SOC might hence be considered critical and immediate and effective recovery management plans are needed to avoid complete land degradation in the next future.info:eu-repo/semantics/publishedVersio

    Poly(GP), neurofilament and grey matter deficits in C9orf72 expansion carriers

    Get PDF
    Objective: To evaluate poly(GP), a dipeptide repeat protein, and neurofilament light chain (NfL) as biomarkers in presymptomatic C9orf72 repeat expansion carriers and patients with C9orf72-associated frontotemporal dementia. Additionally, to investigate the relationship of poly(GP) with indicators of neurodegeneration as measured by NfL and grey matter volume. Methods: We measured poly(GP) and NfL levels in cerebrospinal fluid (CSF) from 25 presymptomatic C9orf72 expansion carriers, 64 symptomatic expansion carriers with dementia, and 12 noncarriers. We explored associations with grey matter volumes using region of interest and voxel-wise analyses. Results: Poly(GP) was present in C9orf72 expansion carriers and absent in noncarriers (specificity 100%, sensitivity 97%). Presymptomatic carriers had lower poly(GP) levels than symptomatic carriers. NfL levels were higher in symptomatic carriers than in presymptomatic carriers and healthy noncarriers. NfL was highest in patients with concomitant motor neuron disease, and correlated with disease severity and survival. Associations between poly(GP) levels and small grey matter regions emerged but did not survive multiple comparison correction, while higher NfL levels were associated with atrophy in frontotemporoparietal cortices and the thalamus. Interpretation: This study of C9orf72 expansion carriers reveals that: (1) poly(GP) levels discriminate presymptomatic and symptomatic expansion carriers from noncarriers, but are not associated with indicators of neurodegeneration; and (2) NfL levels are associated with grey matter atrophy, disease severity, and shorter survival. Together, poly(GP) and NfL show promise as complementary biomarkers for clinical trials for C9orf72-associated frontotemporal dementia, with poly(GP) as a potential marker for target engagement and NfL as a marker of disease activity and progression

    Soil quality, theory and applications. A critical analysis

    No full text
    In its common meaning, the concept of "soil quality" is based on evaluating criteria that are subjective and "anthropocentric" rather than objective and "pedocentric". Several "desirable" or "undesirable" soil conditions and characteristics are considered from the human point of view, disregarding the pedogenetic features. Such an approach perilously leads to support the idea of a "pedogenetic discrimination", which a priori privileges "superior" vs. "inferior" soils, thus discrediting a large part of soil Subgroups, Great Groups, Suborders, and even whole taxonomic Orders. So, a number of soil functions, such as genic reserve guarantee of space-temporal bio-diversity, environmental good cradle of civilization, foundation of the landscape, as well as upholder of man heritage, are neglected at all. If "quality" only concerned rich and fertile soils, there would be the great and looming risk to definitively take "poor" soils away from agriculture, landscape and global pedological reserve. It is necessary to reconsider the concept of "soil quality" as "soil functionality", that is to say "aptitude of soil to express its own potential", bringing out the essential environmental, socio-economic and cultural soil roles on the basis of the inherent conditions and characteristics arising from its peculiar pedogenetic history
    corecore