25 research outputs found

    On the Nature of Ultra-Luminous X-ray Sources from Optical/IR Measurements

    Full text link
    We present a model for the prediction of the optical/infra-red emission from ULXs. In the model, ULXs are binary systems with accretion taking place through Roche lobe overflow. We show that irradiation effects and presence of an accretion disk significantly modify the optical/infrared flux compared to single stars, and also that the system orientation is important. We include additional constraints from the mass transfer rate to constrain the parameters of the donor star, and to a lesser extent the mass of the BH. We apply the model to fit photometric data for several ULX counterparts. We find that most donor stars are of spectral type B and are older and less massive than reported elsewhere, but that no late-type donors are admissable. The degeneracy of the acceptable parameter space will be significantly reduced with observations over a wider spectral range, and if time-resolved data become available

    White Light Flare Continuum Observations with ULTRACAM

    Full text link
    We present sub-second, continuous-coverage photometry of three flares on the dM3.5e star, EQ Peg A, using custom continuum filters with WHT/ULTRACAM. These data provide a new view of flare continuum emission, with each flare exhibiting a very distinct light curve morphology. The spectral shape of flare emission for the two large-amplitude flares is compared with synthetic ULTRACAM measurements taken from the spectra during the large 'megaflare' event on a similar type flare star. The white light shape during the impulsive phase of the EQ Peg flares is consistent with the range of colors derived from the megaflare continuum, which is known to contain a Hydrogen recombination component and compact, blackbody-like components. Tentative evidence in the ULTRACAM photometry is found for an anti-correlation between the emission of these components.Comment: 8 pages, 3 figures. Proceedings of the 16th Workshop on Cool Stars, Stellar Systems, and the Sun (PASP conference series, in press

    Properties of an Eclipsing Double White Dwarf Binary NLTT 11748

    Get PDF
    We present high-quality ULTRACAM photometry of the eclipsing detached double white dwarf binary NLTT 11748. This system consists of a carbon/oxygen white dwarf and an extremely low mass (1.5 yr, we constrain the masses and radii of both objects in the NLTT 11748 system to a statistical uncertainty of a few percent. However, we find that overall uncertainty in the thickness of the envelope of the secondary carbon/oxygen white dwarf leads to a larger (≈13%) systematic uncertainty in the primary He WD's mass. Over the full range of possible envelope thicknesses, we find that our primary mass (0.136-0.162 M_☉) and surface gravity (log (g) = 6.32-6.38; radii are 0.0423-0.0433 R_☉) constraints do not agree with previous spectroscopic determinations. We use precise eclipse timing to detect the Rømer delay at 7σ significance, providing an additional weak constraint on the masses and limiting the eccentricity to ecos ω = (– 4 ± 5) × 10^(–5). Finally, we use multicolor data to constrain the secondary's effective temperature (7600 ± 120 K) and cooling age (1.6-1.7 Gyr)

    Initial Visible and Mid-IR Characterization of P/2019 LD₂ (ATLAS), an Active Transitioning Centaur Among the Trojans, with Hubble, Spitzer, ZTF, Keck, APO and GROWTH Imaging and Spectroscopy

    Get PDF
    We present visible and mid-infrared imagery and photometry of Jovian co-orbital comet P/2019 LD₂ (ATLAS) taken with Hubble Space Telescope/WFC3 on 2020 April 1, Spitzer Space Telescope/IRAC on 2020 January 25, Zwicky Transient Facility between 2019 April 9 and 2019 Nov 8 and the GROWTH telescope network from 2020 May to July, as well as visible spectroscopy from Keck/LRIS on 2020 August 19. Our observations indicate that LD₂ has a nucleus with radius 0.2-1.8 km assuming a 0.08 albedo and that the coma is dominated by ∼100 μ m-scale dust ejected at ∼1 m/s speeds with a ∼1" jet pointing in the SW direction. LD₂ experienced a total dust mass loss of ∼10⁸ kg and dust mass loss rate of ∼6 kg/s with Afρ/cross-section varying between ∼85 cm/125 km² and ∼200 cm/310 km² between 2019 April 9 and 2019 Nov 8. If the Afρ/cross-section increase remained constant, it implies that LD₂ has remained active since ∼2018 November when it came within 4.8 au of the Sun, a typical distance for comets to begin sublimation of H₂O. From our 4.5 μm Spitzer observations, we set a limit on CO/CO₂ gas production of ∼10²⁷/∼10²⁶ mol/s. Multiple bandpass photometry of LD₂ taken by the GROWTH network measured in a 10,000 km aperture provide color measurements of g-r = 0.59±0.03, r-i = 0.18±0.05, and i-z = 0.01±0.07, colors typical of comets. We set a spectroscopic upper limit to the production of H₂O gas of ∼80 kg/s. Improving the orbital solution for LD₂ with our observations, we determine that the long-term orbit of LD₂ is that of a typical Jupiter Family Comet having close encounters with Jupiter coming within ∼0.5 Hill radius in the last ∼3 y to within 0.8 Hill radius in ∼9 y and has a 95% chance of being ejected from the Solar System in < 10 Myr

    The Fast, Luminous Ultraviolet Transient AT2018cow: Extreme Supernova, or Disruption of a Star by an Intermediate-Mass Black Hole?

    Get PDF
    Wide-field optical surveys have begun to uncover large samples of fast (t_rise < 5d), luminous (M_peak < -18), blue transients. While commonly attributed to the breakout of a supernova shock into a dense wind, the great distances to the transients of this class found so far have hampered detailed investigation of their properties. We present photometry and spectroscopy from a comprehensive worldwide campaign to observe AT2018cow (ATLAS18qqn), the first fast-luminous optical transient to be found in real time at low redshift. Our first spectra (<2 days after discovery) are entirely featureless. A very broad absorption feature suggestive of near-relativistic velocities develops between 3-8 days, then disappears. Broad emission features of H and He develop after >10 days. The spectrum remains extremely hot throughout its evolution, and the photospheric radius contracts with time (receding below R<10^14 cm after 1 month). This behaviour does not match that of any known supernova, although a relativistic jet within a fallback supernova could explain some of the observed features. Alternatively, the transient could originate from the disruption of a star by an intermediate-mass black hole, although this would require long-lasting emission of highly super-Eddington thermal radiation. In either case, AT2018cow suggests that the population of fast luminous transients represents a new class of astrophysical event. Intensive follow-up of this event in its late phases, and of any future events found at comparable distance, will be essential to better constrain their origins.Comment: Corrected Figure 8 / Table 4 to use final fits. Includes machine-readable photometry table (hopefully for real this time
    corecore