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ABSTRACT

We present high-quality ULTRACAM photometry of the eclipsing detached double white dwarf binary
NLTT 11748. This system consists of a carbon/oxygen white dwarf and an extremely low mass (
< 0.2M⊙) helium-core white dwarf in a 5.6 hr orbit. To date such extremely low-mass WDs, which
can have thin, stably burning outer layers, have been modeled via poorly constrained atmosphere and
cooling calculations where uncertainties in the detailed structure can strongly influence the eventual
fates of these systems when mass transfer begins. With precise (individual precision ≈ 1%), high-
cadence (≈ 2 s), multicolor photometry of multiple primary and secondary eclipses spanning > 1.5 yr,
we constrain the masses and radii of both objects in the NLTT 11748 system to a statistical uncertainty
of a few percent. However, we find that overall uncertainty in the thickness of the envelope of the
secondary carbon/oxygen white dwarf leads to a larger (≈ 13%) systematic uncertainty in the primary
He WD’s mass. Over the full range of possible envelope thicknesses, we find that our primary mass
(0.136–0.162M⊙) and surface gravity (log(g) = 6.32–6.38; radii are 0.0423–0.0433R⊙) constraints
do not agree with previous spectroscopic determinations. We use precise eclipse timing to detect the
Rømer delay at 7σ significance, providing an additional weak constraint on the masses and limiting the
eccentricity to e cosω = (−4± 5)× 10−5. Finally, we use multicolor data to constrain the secondary’s
effective temperature (7600± 120K) and cooling age (1.6–1.7Gyr).

Keywords: binaries: eclipsing — stars: individual (NLTT 11748) — techniques: photometric — white
dwarfs

1. INTRODUCTION

Among the more interesting products of binary evolu-
tion are compact binaries (periods less than 1 day) con-
taining helium-core white dwarfs (WDs). These WDs are
created from low-mass (< 2.0M⊙) stars when stellar evo-
lution is truncated by a binary companion before the He
core reaches the ≈ 0.48M⊙ needed for the helium core
flash. Such WDs were first identified both as companions
to millisecond pulsars (Lorimer et al. 1995; van Kerkwijk
et al. 2005; Bassa et al. 2006) and other WDs (e.g., Berg-
eron et al. 1992; Marsh et al. 1995), with large numbers of
double WD binaries discovered in recent years. In par-
ticular, the Extremely Low Mass (ELM) survey (Kilic
et al. 2012; Brown et al. 2013, and references therein)
has discovered 10’s of new He-core WDs in the last few
years, focusing on the objects with masses < 0.2M⊙.
The compact binaries containing these WDs will inspi-

ral due to emission of gravitational radiation in less than
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a Hubble time; the most compact of them will merge in
< 1Myr (Brown et al. 2011). When mass transfer be-
gins detailed evolutionary and mass transfer calculations
(Marsh et al. 2004; D’Antona et al. 2006; Kaplan et al.
2012) will determine whether the objects remain sepa-
rate (typically resulting in an AM CVn binary) or merge
(as a R CrB star or possibly a Type Ia supernova; Iben &
Tutukov 1984; Webbink 1984). Essential to determining
the fates of these systems (and hence making predictions
for low-frequency gravitational radiation and other end
products) is an accurate knowledge of their present prop-
erties: their masses determine the in-spiral time and their
radii and degrees of degeneracy help determine the sta-
bility of mass transfer (Deloye et al. 2005; D’Antona et al.
2006; Kaplan et al. 2012). This is particularly interest-
ing for the ELM WDs, as they are predicted to possess
stably burning H envelopes (with ∼ 10−3–10−2M⊙ of
hydrogen) that keep them bright for Gyr (Serenelli et al.
2002; Panei et al. 2007) and increase their radii com-
pared with “cold” fully degenerate WDs by a factor of
2 or more. This burning slows the cooling behavior of
these objects (it may not be monotonic for all objects),
and improving our understanding of ELM WD cooling
would aid in evolutionary models for millisecond pulsars
and later stages of mass transfer (e.g., Tauris et al. 2012;
Antoniadis et al. 2012; Kaplan et al. 2013).
Few ELM WDs have had mass and radius measure-

ments of any precision. As most systems are single-
line spectroscopic binaries (Kaplan et al. 2012), precise
masses are difficult to obtain (although some pulsar sys-
tems are better; Bassa et al. 2006; Antoniadis et al. 2012).
Radii are even harder, typically relying on poorly cali-
brated surface gravity measurements and cooling models
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(as in Kilic et al. 2012). The eclipsing double WD binary
NLTT 11748 (Steinfadt et al. 2010) allowed for the first
geometric measurement of the radius of an ELM WD
in the field (cf. PSR J1911−5958A in the globular clus-
ter NGC 6752; Bassa et al. 2006), finding R ≈ 0.04R⊙

for the ≈ 0.15M⊙ He WD, with new eclipsing systems
(Parsons et al. 2011; Brown et al. 2011; Vennes et al.
2011) helping even more. However, for NLTT 11748 the
original eclipse constraints from Steinfadt et al. (2010)
were limited in their precision. As the system is a single-
line binary, individual masses were not known. Further
uncertainties came from limited photometric precision
and a low observational cadence, along with ignorance
of proper limb darkening for WDs of this surface gravity
and temperature.
Here, we present new data and a new analysis of eclipse

photometry for NLTT 11748 that rectifies almost all of
the previous limitations and gives precise masses and
radii that are largely model independent (at least con-
cerning models of the ELM WDs themselves), allow-
ing for powerful new constraints on the evolution and
structure of ELM WDs. NLTT 11748 was identified by
Kawka & Vennes (2009) as a candidate ELM WD bi-
nary, containing a helium-core WD with mass ≈ 0.15M⊙

presumably orbiting with a more typical 0.6M⊙ car-
bon/oxygen (CO) WD (note that the photometric pri-
mary is the lower-mass object, owing to the inverted
WD mass-radius relation). While searching for pulsa-
tions, Steinfadt et al. (2010) found periodic modula-
tion in the light curve of NLTT 11748 which they de-
termined was due to primary (6%) and secondary (3%)
eclipses in a 5.6 hr orbit, as confirmed by radial veloc-
ity measurements (also see Kawka, Vennes, & Vaccaro
2010). The primary low-mass WD has a low surface
gravity (log(g) = 6.18 ± 0.15 from Kawka et al. 2010
log(g) = 6.54± 0.05 from Kilic et al. 2010) and an effec-
tive temperature Teff = 8580± 50K (Kawka et al. 2010,
or 8690 ± 140K from Kilic et al. 2010). Constraints in
this region of (log(g), Teff) space are particularly valu-
able, as the behavior of systems in this region is complex
with a wide range of predicted ages consistent changing
over small ranges of mass, especially since it is near the
transition from systems that show CNO flashes and those
that do not (Althaus, Miller Bertolami, & Córsico 2013).
Our new data consist of high-cadence (2.5 s compared

with 30 s previously) high-precision photometry in multi-
ple simultaneous filters, which we combine with improved
modeling and knowledge of limb-darkening coefficients
(Gianninas et al. 2013). We outline the new observa-
tions in Section 2. The majority of the new analysis is
described in Section 3, with the results in Section 3.2. Fi-
nally, we make some additional physical inferences and
discuss our results in Section 4.

2. OBSERVATIONS AND REDUCTION

2.1. ULTRACAM Observations

We observed NLTT 11748 with ULTRACAM (Dhillon
et al. 2007) over 27 eclipses during 2010 and 2012, as
summarized in Table 1. ULTRACAM provides simulta-
neous fast photometry through 3 filters with negligible
dead time. During 2010, it was mounted on the 3.5m
New Technology Telescope (NTT) at La Silla Observa-
tory, Chile. We used the u′ and g′ filters, along with ei-

ther r′ or i′. The integration times were chosen based on
the conditions, but were typically 1–2 s for the redder fil-
ters and 5–8 s for the u′ filter. During 2012 ULTRACAM
was mounted on the 4.2m William Herschel Telescope at
the Observatorio del Roque de los Muchachos on the is-
land of La Palma. Here, we used only the u′g′r′ filters,
although for one observation we discarded the r′ data as
they were corrupted. Exposure times were 2–3 s for the
redder filters and 3–5 s for the u′ filter, taking advantage
of better conditions, a larger mirror, and a lower airmass
toward this northern target. The total observing time
for each eclipse was typically less than 40minutes.
The data were reduced using custom software. We

first determined bias and flatfield images appropriate for
every observation. Then, we measured aperture photom-
etry for NLTT 11748 and up to 6 reference sources that
were typically somewhat brighter than NLTT 11748 it-
self. The aperture was sized according to the mean seeing
for the observation, but was held fixed for a single obser-
vation and a single filter. Finally, a weighted mean of the
reference star magnitudes (some of which were removed
because of saturation and some of which were removed
because of low signal-to-noise, especially in the u′ band)
was subtracted from the measurements for NLTT 11748.
These detrended data were the final relative photometry
that we used in all subsequent analysis. Given the short
duration of the eclipse (≈ 3minutes), any remaining vari-
ations in the relative photometry due to transparency or
airmass changes could be ignored; we did not attempt to
model the out-of-eclipse data (cf. Shporer et al. 2010).

2.2. Near-Infrared Observations

In addition to the ULTRACAM observations, we ob-
served a few eclipses using the Gemini Near-Infrared Im-
ager (NIRI; Hodapp et al. 2003) on the 8m Gemini-North
telescope under program GN-2010B-Q-54. Given the low
signal-to-noise and relatively long cadence, the primary
eclipse data were not particularly useful in constraining
the properties of the system. Instead, we concentrate on
the secondary eclipse observations, where the additional
wavelength coverage is helpful in constraining the effec-
tive temperature of the secondary (Section 4.2). The
data were taken on 2010 November 21 and 2010 Decem-
ber 15 using the J-band filter. The total duration of the
observations were 37 and 31 minutes around a secondary
eclipse, as predicted from our initial ephemeris. Suc-
cessive exposures happened roughly every 25 s, of which
20 s were actually accumulating data, so our overhead
was about 20%.
To reduce the data, we used the nprepare task in IRAF,

which adds various meta-data to the FITS files. We then
corrected the data for nonlinearities9 and applied flat-
fields computed using the niflat task, which compared
dome-flat exposures taken with the lamp on and off to
obtain the true flatfield. We used our own routines to
perform point spread function photometry with a Moffat
(1969) function. This function was held constant for each
observation and was fit to bright reference stars. Finally,
we subtracted the mean of two bright reference stars to
de-trend the data.

9 Using the nirlin.py script from
http://staff.gemini.edu/̃ astephens/niri/nirlin/nirlin.py.
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Table 1
Log of ULTRACAM observations and eclipse times

Date Eclipse Time Telescope Eclipse Filtersa Exposuresa Num. Starsa Precisionsa

(MBJD) (s) (%)

2010 Nov 12. . . 55512.182179(17) NTT secondary u′g′i′ 7.69,2.55,2.55 4,5,3 2.9,1.0,1.3
2010 Nov 15. . . 55515.120443(21) NTT primary u′g′i′ 7.69,2.55,2.55 4,5,4 6.4,1.8,2.2
2010 Nov 15. . . 55515.237910(23) NTT secondary u′g′i′ 7.69,2.55,2.55 4,5,3 3.6,1.2,1.7
2010 Nov 25. . . 55525.228090(18) NTT primary u′g′i′ 7.69,2.55,2.55 4,5,3 4.2,1.5,1.6
2010 Nov 26. . . 55526.168300(13) NTT primary u′g′r′ 5.89,1.95,1.95 4,5,3 3.5,1.3,1.6
2010 Nov 26. . . 55526.285767(29) NTT secondary u′g′r′ 5.89,1.95,1.95 4,5,2 6.6,1.9,2.5
2010 Nov 27. . . 55527.108548(12) NTT primary u′g′i′ 5.89,1.95,1.95 4,5,4 3.4,1.1,1.5
2010 Nov 27. . . 55527.226026(20) NTT secondary u′g′i′ 5.46,1.35,1.35 4,5,4 3.8,1.5,1.8
2010 Nov 28. . . 55528.166253(16) NTT secondary u′g′r′ 5.89,1.95,1.95 4,5,5 3.3,1.1,1.3
2010 Nov 29. . . 55529.106526(19) NTT secondary u′g′i′ 5.46,1.35,1.35 4,4,4 4.1,1.4,2.0
2010 Dec 02. . . 55532.162334(16) NTT secondary u′g′i′ 7.69,2.55,2.55 4,4,4 2.6,0.9,1.3
2010 Dec 10. . . 55540.154399(16) NTT secondary u′g′i′ 7.69,2.55,2.55 4,4,4 2.7,0.9,1.3
2010 Dec 15. . . 55545.208237(16) NTT primary u′g′i′ 7.48,2.48,2.48 4,4,4 3.7,1.3,1.7
2010 Dec 16. . . 55546.148475(18) NTT primary u′g′i′ 7.48,2.48,2.48 4,4,4 4.7,1.6,2.0
2010 Dec 17. . . 55547.088715(23) NTT primary u′g′i′ 7.48,2.48,2.48 4,4,4 5.1,1.8,2.1
2010 Dec 18. . . 55548.146459(36) NTT secondary u′g′i′ 7.48,2.48,2.48 4,4,4 7.0,2.6,3.4
2012 Jan 17. . . 55943.870809(09) WHT primary u′g′r′ 2.48,2.48,2.48 4,5,3 4.1,0.7,0.8
2012 Jan 17. . . 55943.988273(13) WHT secondary u′g′r′ 4.99,2.48,2.48 4,5,4 2.9,0.8,0.9
2012 Jan 18. . . 55944.928546(22) WHT secondary u′g′r′ 4.99,2.48,2.48 4,5,3 4.1,1.2,1.5
2012 Jan 19. . . 55945.046118(28) WHT primary u′g′r′ 4.98,2.48,2.48 4,5,3 5.3,1.7,2.0
2012 Jan 19. . . 55945.868766(42) WHT secondary u′g′ 5.99,2.98, · · · 4,5, · · · 3.7,1.3, · · ·

2012 Jan 21. . . 55947.866825(09) WHT primary u′g′r′ 3.46,1.72,1.72 4,5,2 2.9,0.9,1.0
2012 Jan 22. . . 55948.924551(12) WHT secondary u′g′r′ 3.99,1.98,1.98 4,5,4 2.9,0.8,0.9
2012 Jan 23. . . 55949.042137(10) WHT primary u′g′r′ 3.99,1.98,1.98 4,5,4 4.0,0.9,1.1
2012 Sep 01. . . 56171.174286(11) WHT primary u′g′r′ 5.56,1.84,1.84 4,4,4 3.8,1.6,1.1
2012 Sep 04. . . 56174.230072(11) WHT primary u′g′r′ 6.48,2.14,2.14 5,4,4 2.5,1.0,1.0
2012 Sep 10. . . 56180.106572(12) WHT primary u′g′r′ 5.00,2.48,2.48 4,4,4 2.8,2.1,0.9

a We give the three filters used along with the corresponding exposure times, number of reference stars used, and typical
fractional precisions on a single measurement of NLTT 11748.

3. ECLIPSE FITTING

To start, we determined rough eclipse times and shapes
by fitting a simple model to the data, using a square
eclipse for the secondary eclipses and a linear limb-
darkening law for the primary eclipses. These results
were only used as a starting point for the later analy-
sis, but the times were correct to ±10 s. We then fit the
photometry data, as summarized below. The fitting used
only the ULTRACAM data; the NIRI data were added
later to constrain the secondary temperature.
Our main eclipse fitting used a Markov-Chain Monte

Carlo (MCMC) fitter, based on a Python implemen-
tation10 (Foreman-Mackey et al. 2013) of the affine-
invariant ensemble sampler (Goodman & Weare 2010).
We parameterized the light curve according to

• Mass and radius of the primary (low-mass) WD,
M1 and R1

• Orbital inclination i

• Radial velocity amplitude of the primary, K1

• Mean period PB , reference time t0, and time delay
∆t

• Temperatures of the primary T1 and secondary T2

for 9 total parameters. These were further constrained
by priors based on spectroscopy, with K1 = 273.4 ±

0.5 kms−1 and T1 = 8690 ± 140K (Steinfadt et al.
2010; Kilic et al. 2010). We assumed a strictly periodic

10 See http://dan.iel.fm/emcee/.

ephemeris (with no spin down; see Section 4.1) that in-
cludes a possible time delay between the primary and
secondary eclipses (Kaplan 2010).
Our limb-darkening law used 4-parameter (Claret

2000) limb-darkening coefficients, as determined by Gi-
anninas et al. (2013) for a range of gravities and effective
temperatures. We interpolated the limb-darkening pa-
rameters for the primary’s temperature T1, although we
used several fixed values of log(g) (6.25, 6.50, and 6.75)
instead of the value for each fit. This is done both to
avoid numerical difficulties in two-dimensional (2D) in-
terpolation over a coarse grid and to avoid biasing the
fitted log(g) by anything other than the light-curve shape
(unlike the temperature, the different spectroscopic de-
terminations of the surface gravity are significantly dis-
crepant). We found that variations in log(g) used for
the limb-darkening parameters changed the fit results by
< 1 σ.
With values forM1, i, PB , and K1, the mass of the sec-

ondary (high-mass) WD, M2, is then determined (and so
is the mass ratio q ≡ M1/M2, as well as K2 = qK1). The
final parameter is the radius of the secondary WD R2.
However, as this is a more or less normal CO WD that is
not tidally distorted ((M1/M2)(R2/a)

3 ≈ 10−7), we used
a mass-radius relation appropriate for WDs in this mass
range (Fontaine, Brassard, & Bergeron 2001; Bergeron,
Leggett, & Ruiz 2001)11, interpolating linearly. The
complication that this introduced is that WDs with fi-
nite temperatures do have radii slightly larger than the
nominal zero-temperature model and that this excess de-

11 See http://www.astro.umontreal.ca/̃ bergeron/CoolingModels/.
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Figure 1. Normalized primary (left) and secondary (right) eclipses of NLTT 11748, as measured with ULTRACAM. The raw data are
the points, while binned data are the circles with error bars, and the best-fit models are the solid lines. The different filters are labeled. A
1minute interval is indicated by the scale bar at the lower left. Data from 2010 and 2012 have been combined.

pends on the thickness of their hydrogen envelopes. For
the mass and temperature range considered here, this
excess is typically r2 ≡ R2/R2(T2 = 0) = 1.02–1.06. In
what follows, we treat r2 as a free parameter and give our
results in terms of r2, with a detailed discussion of the
influence of r2 on the other parameters in Section 3.1.
Overall, we had 22,574 photometry measurements

within ±400 s of the eclipses (shown in Figure 1), which
we corrected to the solar system barycenter using a cus-
tom extension to the TEMPO212 pulsar timing package
(Hobbs, Edwards, & Manchester 2006). The eclipses
themselves were modeled with the routines of Agol (2002,
also see Mandel & Agol 2002), which accounts for intra-
binary lensing (Maeder 1973; Marsh 2001).
We started 200 MCMC “walkers”, where each walker

executes an independent path through the parameter
space. The walkers were initialized from normally dis-
tributed random variables, with each variable taken
from the nominal values determined previously (Stein-
fadt et al. 2010; Kilic et al. 2010) with generous un-
certainties. In the end, we increased the uncertainties
on the initial conditions and it did not change the re-
sulting parameter distributions. Each walker was al-
lowed 500 iterations to “burn in”, after which its memory
of the sampled parameter space was deleted. Finally,
each walker iterated for a further 5000 cycles, giving
200 × 5000 = 1, 000, 000 samples. However, not all of
these are independent: we measured an auto-correlation
length of about 100 samples from the resulting distri-
butions, so we thinned the parameters by taking every
91 samples (we wanted a number near our measured
auto-correlation but that was not commensurate with
the number of walkers).

3.1. The Influence of the Secondary’s Envelope
Thickness on the Measurement

As discussed above, our one significant assumption
(which was also made in Steinfadt et al. 2010) is that

12 See http://www.atnf.csiro.au/research/pulsar/tempo2/.

the secondary star follows the mass-radius relation for a
CO WD. This seems reasonable, given inferences from
observations (Kawka et al. 2010; Kilic et al. 2010) and
from evolutionary theory. However, with the high preci-
sion of the current dataset we must examine the choice
of mass-radius relation closely. In particular, the zero-
temperature model used in Steinfadt et al. (2010) is no
longer sufficient. For effective temperatures near 7500K
and masses near 0.7M⊙, finite-temperature models are
larger than the zero-temperature models by roughly
2% (thin envelopes, taken to be 10−10 of the star’s
mass) to 6% (thick envelopes, taken to be 10−4 of the
star’s mass) and moreover the excess depends on mass
(Fontaine et al. 2001; Bergeron et al. 2001). This ex-
cess is similar to what we observe in a limited series of
models computed using Modules for Experiments in
Stellar Astrophysics (Paxton et al. 2011, 2013). The
envelope thickness can be constrained directly through
astroseismology of pulsating WDs (ZZ Ceti stars), with
most sources having thick envelope (fractional masses of
10−6 or above), but extending down such that roughly
10% of the sources have thin envelopes (fractional masses
of 10−7 or below); there is a peak at thicker envelopes,
but there is a broad distribution (Romero et al. 2012;
consistent with the findings of Tremblay & Bergeron
2008).
We use the parameter r2 to explore the envelope thick-

ness. Values near 1.02 correspond to thin envelopes (with
some slight mass dependence), while values near 1.06 cor-
respond to thick envelopes. Changing r2 over the range
of values discussed above leads to changes in the best-fit
physical parameters M1, M2, R1, and R2. In particular,
M1 was surprisingly sensitive to r2. Determining a “cor-
rect” value for r2 is beyond the scope of this work, but we
can understand how the physical parameters scale with
r2 in a reasonably simple manner. Since we know the
period accurately and can also say that sin i ≈ 1 (deeply
eclipsing), we know that M1 +M2 ∝ a3 (where a is the
semi-major axis) from Kepler’s third law. We also know
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Figure 2. Joint confidence contours on the parameters from the fit of NLTT 11748, assuming r2 = 1.00. We show 68%, 95%, and 99.7%
contours on WD distributions that have been marginalized from the 8D original distribution (we do not plot distributions for the reference
time t0, as it is of little physical interest). ∆PB is the offset of PB with respect to its mean (Table 2). We also show the 1D distributions
for each parameter. In all of the plots, the black dashed lines show the means and the black dotted lines show the ±1σ limits. Finally,
in the plot of M2 vs. M1 we show solid lines corresponding to the mass ratios q = 0.16, 0.18, and0.20 (which can map to constraints from
∆t), while in the plot of R1 vs. M1 we show solid lines corresponding to log(g) = 6.2, 6.3, and 6.4.

K1, which is the orbital speed of the primary:

K1 ≈
2πa

PB

M2

M1 +M2
, (1)

which allows us to constrain aM2 ∝ M1+M2. Combining
these gives M2 ∝ a2. We can further parameterize the
mass-radius relation of the secondary:

R2 ∝ r2M
β
2 . (2)

The duration of the eclipse fixes R1/a, while the duration
of ingress/egress fixes R2/a (e.g., Winn 2011), so we can

also say a ∝ R2 or a ∝ r2M
β
2 . Combining this with

M2 ∝ a2 gives M2 ∝ r
2/(1−2β)
2 . Near M2 ≈ 0.7M⊙, the

mass–radius relation has a slope β ≈ −0.78 (compare
with the traditional β = −1/3 for lower masses), soM2 ∝

r0.782 . Since a ∝ M
1/2
2 and both R1 and R2 are ∝ a,

R1 ∝ r
1/(1−2β)
2 ∝ r0.392 and the same for R2 (at a fixed

M2, R2 ∝ r2, as given in Eqn. 2; however, the result here
is for the best-fit value of R2, which can result in changes
of the other parameters including M2).
To understand how M1 changes with r2, we use the

Keplerian mass function, which fixes M3
2 ∝ (M1 +M2)

2.
If we take the logarithmic derivative of this, we find:

d logM1

M1
= α

d logM2

M2
(3)

with α = 3/2 + M2/2M1. Since our mass ratio q is
roughly 0.2 (Table 2), we find α ≈ 4.0. From this, we

find that M1 ∝ r
2α/(1−2β)
2 ∝ r3.132 , which is much steeper

than the other dependencies. These relations are borne
out by MCMC results (Table 2, Figure 2, and Figure 3).

3.2. Results

The model fit the data well, with a minimum χ2 of
22978.8 for 22,566 degrees of freedom13. We show 1D
and 2D marginalized confidence contours in Figure 2 and
the best-fit light curves in Figure 1. The results are given
in Table 2. A linear ephemeris gives a satisfactory fit to
the data, although we find a significantly non-zero value
for ∆t, which we discuss below.

13 In all of our fitting, we make use of the χ2 statistic. This
assumes that individual data points are independent of each other;
on the other hand, correlated errors can become significant for
very precise photometry and can alter the nature of parameter and
uncertainty estimation (see Carter & Winn 2009). To test this,
we examined the out-of-eclipse data for any correlation between
subsequent data points. We found autocorrelation lengths of 0–
2 samples, with a mean of 0.85. This was very similar to the
distribution of autocorrelation lengths estimated from sets of 100
uncorrelated random numbers drawn from N (1, 0.003) (similar in
length and properties to our data), so we conclude that deviations
from an autocorrelation length of 0 are consistent with the finite
sample sizes that we used and that the data are consistent with
being independent.
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Figure 3. Mass and radius constraints as a function of r2, show-
ing r2 = 1.00 (red), 1.02 (blue), 1.04 (green), and 1.06 (purple).
In the left panel, we plot M1 vs. R1, while in the right panel
we plot M1 vs. M2. In both panels we plot the best-fit points
(filled circles), along with the expected variations according to
Section 3.1 (dashed lines). Additionally we plot contours of con-
stant surface gravity log(g) = 6.2, 6.3, and 6.4 (left) and mass ratio
q = 0.16, 0.18, 0.20, 0.22, and 0.24 (right) in black.

For NIRI, the quality of the data is modest, with typ-
ical uncertainties of ±0.03mag and a cadence of 25 s.
Given the quality of the ULTRACAM results, fitting the
NIRI data with all parameters free would not add to the
results. Instead, we kept the physical parameters fixed
at their best-fit values from Table 2 and only fit for the
eclipse depth at 1.25µm.
The results are shown in Figure 4. Despite the modest

quality of the data the fit is good, with χ2 = 160.7 for
161 dof. We find a depth d2(1.25µm) of 4.2% ± 0.4%,
corresponding to a J-band flux ratio d2(1.25µm)/(1 −

d2(1.25µm)) of 4.4%±0.4% (see Section 4.2). This value
is slightly off from the predictions based on our fit to the
ULTRACAM data (Figure 5), although by less than 2σ.
To derive the eclipse times in Table 1, we used the re-

sults of the full eclipse fit but fit the model (with the
shape parameters held fixed) to each observation indi-
vidually.

4. DISCUSSION

The analyses presented in Section 3 show precise de-
terminations of the masses and radii of the WDs in the
NLTT 11748 binary. We have one remaining free param-
eter, which is the size of the radius excess of the CO WD
r2, related to the size of its hydrogen envelope. More-
over, we have shown that the eclipse data are consistent
with a linear ephemeris, although there is a systematic
shift between the primary and secondary eclipses. Sepa-
rately, the variation of the secondary eclipse depth with
wavelength allows for accurate determination of the tem-
perature of the CO WD, which then determines its age
through well-studied CO WD cooling curves. Below, we
discuss additional constraints on the masses, radii, and
ages of the components determined by consideration of
the eclipse times, secondary temperature, and distance
(determined by astrometry).

4.1. Ephemeris, Rømer Delay, and Mass Ratio
Constraints

Using the measured eclipse times from Table 1, along
with those reported by Steinfadt et al. (2010), we com-
puted a linear ephemeris for NLTT 11748 with a constant
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Figure 4. Secondary eclipses of NLTT 11748 observed with Gem-
ini/NIRI. The two observations are the circles/squares, as labeled.
The solid curve is the best-fit model, with the points represent-
ing the model integrated over the 20 s exposures for each set of
observations.
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Figure 5. Secondary-to-primary flux ratio as a function of wave-
length for the secondary eclipses of NLTT 11748. We plot data
from 2010 and 2012 together, along with our best-fit model (open
symbols). The different bands are labeled. The model is derived
from Tremblay et al. (2011) synthetic photometry. We also show
the corresponding flux ratio determined from blackbodies (which
had been used previously), which does not match the u′ data at
all.

frequency fB = 1/PB. The residuals (Figure 6) are con-
sistent with being flat and with the results from the full
eclipse fitting (Table 2), showing no indication of orbital
changes. However, we do find a systematic offset be-
tween the times of the primary and secondary eclipses,
as predicted in Kaplan (2010). The secondary eclipses
arrive earlier on average, by ∆t = 4.1 ± 0.5 s (after cor-
recting for this, the rms residual for the new data is 1.7 s
and the overall χ2 for the ephemeris data is 38.9 with 29
dof), which is consistent with ∆t = 4.2 ± 0.6 s inferred
from the full eclipse fitting (Table 2). The sign is correct
for a delay caused by the light-travel delay across the
system (the Rømer delay) when the more massive object
is smaller, the magnitude of which is (Kaplan 2010):

∆tLT =
PBK1

πc
(1− q) . (4)

If we use ∆t = 4.2 ± 0.6 s (from the full eclipse fitting
in Table 2), then we infer qLT = 0.29 ± 0.10. This is
fully consistent with our fitted values for q (Table 2; q =
0.192± 0.008 for r2 = 1.00). However, it is also possible
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Figure 6. Residual eclipse phase vs. eclipse time of NLTT 11748,
showing only the ULTRACAM measurements, although the mea-
surements of Steinfadt et al. (2010) were included in the ephemeris
calculations. The primary eclipses are the blue squares, while the
secondary eclipses are the red circles. The data have been fit with a
constant-frequency ephemeris. We find an offset between the mean
time of the primary eclipse compared with that of the secondary
eclipse of ∆t = 4.1± 0.5 s.

that some time delay is caused by a finite eccentricity of
the orbit (Kaplan 2010; Winn 2011), with

∆te =
2PBe

π
cosω, (5)

where e is the eccentricity and ω is the argument of peri-
astron14. However, the Rømer delay must be present in
the eclipse timing with a magnitude (4.76 ± 0.05)r2.62 s,
based on our mass determination. Therefore, instead
of using the Rømer delay to constrain the masses, we
can use it to constrain the eccentricity. Doing this gives
e cosω = (−4± 5)× 10−5 (consistent with a circular or-
bit). This would then be one of the strongest constraints
on the eccentricity of any system without a pulsar, as
long as the value of ω is not particularly close to π/2
(or 3π/2). This may be testable with long-term moni-
toring of NLTT 11748, as relativistic apsidal precession
(Blandford & Teukolsky 1976) should be ω̇ ≈ 2 deg yr−1

(for a nominal e = 10−3). As long as any tidal precession
is on a longer timescale, the change in ω could separate
the Rømer delay from that due to a finite eccentricity.
For a system as wide as NLTT 11748 tidal effects are
likely to be negligible (Fuller & Lai 2013; Burkart et al.
2013). Further relativistic effects may be harder to dis-

entangle: orbital period decay ṖB will be of a magnitude
−1µs yr−1, compared with a period derivative from the
Shklovskii (1970) effect15 of +24µs yr−1 (current data do

not strongly constrain ṖB because of the short baseline,
with ṖB = (−1900± 900)µs yr−1). Therefore, an accu-
rate determination of the distance (whose uncertainties
currently dominate the uncertainty in the period deriva-
tive) will be necessary before any relativistic ṖB can be
measured.
In comparison, the radial velocity constraints on the

14 Note that the expression from Kaplan (2010) is missing a
factor of two, as pointed out by Barlow, Wade, & Liss (2012).

15 The Shklovskii (1970) ṖB (also known as secular accelera-
tion) is particularly large in the case of NLTT 11748 because of
its proximity and large space velocity (Kawka & Vennes 2009). If
measured, it can be used to derive a geometric distance constraint
(Bell & Bailes 1996).

eccentricity are considerably weaker: Steinfadt et al.
(2010) determined e < 0.06 (3σ), while Kilic et al.
(2010) and Kawka et al. (2010) both assumed circular
orbits. We refit all of the available radial velocity mea-
surements from those three papers. Assuming a circular
orbit we find K1 = 273.3 ± 0.4 kms−1 (like Kilic et al.
2010, whose data dominate the fit). We also tried the
eccentric orbit as parameterized by Damour & Taylor
(1991). The fit is consistent with a circular orbit, with
e cosω = 0.001 ± 0.004 and e sinω = −0.004 ± 0.004,
which limits e < 0.017 (3σ). The eclipse durations can
also weakly constrain the eccentricity, with the ratio of
the secondary eclipse to the primary eclipse duration
roughly given by 1 + 2e sinω (for e ≪ 1), although as
noted by Winn (2011) this is typically less useful than
the constraints on e cosω from eclipse timing. In the
future we can fit for this term directly.
While all data are satisfactorily fit by just a simple lin-

ear ephemeris, we can also ask if a third body could be
present in the system. Such a body, especially if on an
inclined orbit, could significantly speed up the merger
of the inner binary and may alter the evolution of the
system (Thompson 2011). Any putative tertiary would
likely be in a more distant circumbinary orbit, since the
interactions necessary to produce the ELM WD would
have disrupted closer companions. A tertiary would pro-
duce transit timing variations (Holman & Murray 2005;
Agol et al. 2005), moving the eclipse times we measure.
A full analysis of transit timing variations, including non-
linear orbital interactions, is beyond the scope of this pa-
per. Instead, we did a limited analysis where we consid-
ered the system to be sufficiently hierarchical such that
the inner binary was unperturbed (consistent with our
measurements) and only its center of mass moved due to
the presence of the tertiary. We took the ephemeris resid-
uals and fit a variety of periodic models, determining for
each trial period what the maximum amplitude could be
(marginalizing over phase) such that χ2 increased by 1
from the linear ephemeris fit (adding additional terms in
general decreases χ2, but we wanted to see what the max-
imum possible amplitude could be). We found that for
periods of 1–300days, the limit on any sinusoidal compo-
nent was . 1 s (consistent with the rms discussed above)
or smaller than the orbit of the inner binary. Therefore,
unless it is highly inclined, no tertiary with such a pe-
riod is possible. As we get to periods that are longer than
300days, we no longer have sufficient data to constrain a
periodic signal, but here the constraints from our poly-
nomial fit also exclude any stellar-mass companion (an
amplitude of 1 s at a period of 300days would require a
mass of 0.002M⊙ if the outer orbit is also edge-on).

4.2. Secondary Temperature and Age Constraints

As with the NIRI data, we can separate the fitting of
the secondary eclipse depth from the rest of the eclipse
fitting and derive the eclipse depths as a function of
wavelength, d2(λ) (where we also separate the 2010 and
2012 ULTRACAM observations). Given the 8 secondary
eclipse depths that we measure, we can determine the ra-
tio of the radius of the secondary to the primary R2/R1

as well as the temperature of the secondary, T2, given
measurements of T1. For that, we use the determination
by Kilic et al. (2010)—T1 = 8690± 140K—largely con-
sistent with the value determined by Kawka et al. (2010)
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of 8580± 50K. The secondary eclipse depths are related
to the wavelength-dependent flux ratios:

f(λ) ≡
F2(λ)

F1(λ)
=

d2(λ)

1− d2(λ)
=

R2
210

−m(λ,T2)/2.5

R2
110

−m(λ,T1)/2.5
, (6)

where m(λ, T ) is the absolute magnitude of a fiducial
WD with a temperature T at wavelength λ.
To determine the secondary’s temperature from the

eclipse depths, we first sample T1 from the distribution
N (8690, 140) 1000 times. Then, for each sample, we in-
terpolate the synthetic photometry of Tremblay et al.
(2011, using the 0.2M⊙ model) to determine the pho-
tometry for the primary, m(λ, T1). We then solve for
the temperature of the secondary and the radius ratio
by minimizing the χ2 statistic, comparing our measured
f(λ) with the synthetic values (using the 0.7M⊙ grid for
the secondary; the results did not change if we used the
0.6M⊙ or 0.8M⊙ grids instead).
The resulting distribution of T2 and (R2/R1) is inde-

pendent of any assumptions in the global eclipse fitting.
We find T2 = 7643 ± 94K and R2/R1 = 0.255 ± 0.002.
However, the fits had an average χ2 = 12.6 for 5
dof, mostly coming from a small mismatch between the
inferred eclipse depth at g′ measured in 2010 versus
2012. If we increase the uncertainties to have a re-
duced χ2 = 1, then we find T2 = 7643 ± 150K and
R2/R1 = 0.255± 0.003. Note that the radius ratio here
is fully consistent with that inferred from the fit to the
rest of the eclipse shape (Section 3 and Table 2).
We show the results in Figure 5 (including the results

of the NIRI data analysis), along with the results using
blackbodies for the flux distributions instead of the syn-
thetic photometry (as had been done by Steinfadt et al.
2010 and others). It is apparent that the blackbody does
not agree well and using the synthetic photometry is vi-
tal.
The constraints using the separate wavelength-

dependent eclipse depths ended up being slightly less pre-
cise than the value from the full eclipse fitting, although
the two constraints are entirely consistent. We therefore
choose the values from Table 2, where we determined a
secondary temperature of T2 = 7600± 120K. Using the
thin (thick) hydrogen atmosphere models for a 0.7M⊙

CO WD, we find a secondary age τ2 = 1.70 ± 0.09Gyr
(1.58±0.07Gyr) by interpolating the cooling curves from
Tremblay et al. (2011). So, the envelope uncertainty
does not contribute significantly to the uncertainty in
the age of the secondary directly. A bigger contribution
is through changes in the secondary mass M2.

4.3. Primary Radius and Distance Constraints

Based on the measured J-band photometry (J =
15.84 ± 0.08 from Skrutskie et al. 2006)16, along with
an estimate for the extinction (E(B − V ) = 0.10 and
RV = 3.2, from Kilic et al. 2010), we can compare
our measured radius with that inferred from a parallax
measurement (π = 5.6 ± 0.9mas; H. Harris 2011, pri-
vate communication). We again use the Tremblay et al.
(2011) synthetic photometry for the bolometric correc-
tion at the temperature determined by Kilic et al. (2010),

16 Kawka & Vennes (2009) incorrectly give the 2MASS J-
band magnitude as 15.873 ± 0.077, but the online database lists
2MASS J03451680+1748091 as having J = 15.837 ± 0.077.

and use AJ = 0.29AV . Based on these data, we in-
fer R1,phot = 0.049 ± 0.009R⊙. This is fully consistent
(within 0.5σ) with our inferred values from the eclipse
fitting. We can use this value along with the radius ra-
tio inferred from the eclipse shape (roughly R2/R1 =
0.2567 ± 0.0006) to determine R2 = 0.013 ± 0.002R⊙.
From here, we can calculate M2,thin = 0.57 ± 0.08M⊙

and M2,thick = 0.61± 0.11M⊙, which makes use of evo-
lutionary models that were interpolated to the correct ef-
fective temperature (Fontaine et al. 2001; Bergeron et al.
2001). These masses are a little lower than our secondary
masses calculated by the eclipse fitting, but differ by less
than 2 σ. Inverting the problem, we infer based on our
eclipse fitting for r2 = 1.02 a distance d = 159 ± 8 pc
(π = 6.3 ± 0.3mas), with the uncertainty dominated by
the uncertainty in the photometry.
Our analysis above included the effects of in-binary

microlensing. Steinfadt et al. (2010) assumed microlens-
ing would modify the primary eclipse depth, but did
not show definitively that it was required for a good
fit (cf. Muirhead et al. 2013). We fit the same data
with the same procedure as in Section 3, but did not al-
low for any decrease in the depth of the primary eclipse
from lensing. The resulting fit was adequate, although
slightly worse than with lensing. With no lensing am-
plification, to match the depth of the primary eclipse
requires a reduced value of R2/R1 or a lower inclina-
tion. We can do that by increasing R1 or decreasing
R2, but that is difficult as the eclipse durations fix R1/a
and R2/a. We end up accomplishing this by increasing
the masses, which widens the orbit (increasing a to go
along with the increase in R1, and decreasing R2 through
the mass-radius relation for the WD). For r2 = 1.00,
we find M1 = 0.16M⊙ and M2 = 0.74M⊙, along with
R1 = 0.044R⊙ (log(g)1 = 6.36± 0.04). While this com-
bination of parameters does not give as good a fit to the
data as the fit with lensing, the difference is not statisti-
cally significant, with an increase in χ2 of 20 (the reduced
χ2 increased from 1.018 to 1.019, for a chance of occur-
rence of about 50%). We would need other independent
information (such as a much more precise parallax or a
more precise time delay) to break the degeneracies.

5. CONCLUSIONS

Using extremely high-quality photometry combined
with improved modeling, we have determined the masses
and radii of the WDs in the NLTT 11748 binary to bet-
ter than ±0.01M⊙ and ±0.0005R⊙ statistical precision,
although uncertainties in the radius excess limit our final
precision. This analysis makes use of the eclipse depth
and shape, including corrections for gravitational lens-
ing, and is consistent with the Rømer delay measured
independently from eclipse times, ∆t = 4.2± 0.6 s. This
would be the first detection of an observed Rømer de-
lay for ground-based eclipse measurements (cf. Bloemen
et al. 2012; Barlow et al. 2012), although in all of these
systems there is the possibility that the time delay is
instead related to a finite, but small, eccentricity.
Our mass measurement for the smallest plausible ra-

dius excess (r2 = 1.02), M1 = 0.137±0.007M⊙, is signif-
icantly lower than that inferred by Kilic et al. (2010) on
the basis of the Panei et al. (2007) evolutionary models or
that inferred by Althaus et al. (2013) from newer models.
Even for the highest value of r2 that we considered (1.06),
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Table 2
Eclipse Fitting Results

Quantity Value: r2 = 1.00 Value: r2 = 1.02 Value: r2 = 1.04 Value: r2 = 1.06

M1
a (M⊙) . . . . 0.136 ± 0.007 0.145 ± 0.007 0.153 ± 0.007 0.162 ± 0.007

R1
a (R⊙) . . . . . 0.0423 ± 0.0004 0.0426 ± 0.0004 0.0429 ± 0.0004 0.0433 ± 0.0004

K1
a,b (km s−1) 273.4 ± 0.5 273.4 ± 0.5 273.4 ± 0.5 273.4 ± 0.5

M2 (M⊙) . . . . . 0.707 ± 0.008 0.718 ± 0.008 0.729 ± 0.008 0.740 ± 0.008
R2 (R⊙) . . . . . . 0.0108 ± 0.0001 0.0109 ± 0.0001 0.0110 ± 0.0001 0.0111 ± 0.0001
ia (deg) . . . . . . . 89.67 ± 0.12 89.67 ± 0.12 89.66 ± 0.12 89.67 ± 0.12
a (R⊙) . . . . . . . . 1.514 ± 0.009 1.526 ± 0.009 1.538 ± 0.009 1.549 ± 0.009
q . . . . . . . . . . . . . 0.192 ± 0.008 0.201 ± 0.008 0.210 ± 0.007 0.219 ± 0.007
K2 (km s−1) . . 52.4 ± 2.1 55.0 ± 2.1 57.5 ± 2.0 60.0 ± 2.0
R2/R1 . . . . . . . . 0.2565 ± 0.0006 0.2567 ± 0.0006 0.2568 ± 0.0006 0.2570 ± 0.0006
log(g)1 . . . . . . . 6.32 ± 0.03 6.34 ± 0.03 6.36 ± 0.03 6.38 ± 0.03
log(g)2 . . . . . . . 8.22 ± 0.01 8.22 ± 0.01 8.22 ± 0.01 8.22 ± 0.01
T1

a,b (K) . . . . . 8706 ± 136 8705 ± 137 8705 ± 135 8707 ± 136
T2

a (K) . . . . . . . 7597 ± 119 7594 ± 120 7591 ± 118 7590 ± 119
t0a (MBJD). . . 55772.041585 ± 0.000004 55772.041585 ± 0.000004 55772.041585 ± 0.000004 55772.041585 ± 0.000004
PB

a (day). . . . . 0.235060485 ± 0.000000003 0.235060485 ± 0.000000003 0.235060485 ± 0.000000003 0.235060485 ± 0.000000003
∆ta (s). . . . . . . . 4.2 ± 0.6 4.2 ± 0.6 4.2 ± 0.6 4.2 ± 0.6
χ2/DOF . . . . . . 22978.8 / 22566 22978.8 / 22566 22978.7 / 22566 22978.6 / 22566

a Directly fit in the MCMC. All other parameters are inferred.
b Used a prior distribution based on spectroscopic observations. All other prior distributions were flat.

we still find a primary mass of 0.157± 0.008M⊙, signifi-
cantly below the 0.17−0.18M⊙ range discussed by Kilic
et al. (2010) and Althaus et al. (2013). This may call for
a revision of those models to take into account the im-
proved observational constraints or it may indicate that
an even higher value of r2 is more realistic. In any case,
our surface gravity is lower than that from Kilic et al.
(2010), which was used by Althaus et al. (2013), while
it is consistent to within 1 σ with the gravity measured
by Kawka et al. (2010). With our log(g) determination,
the mass is closer to the prediction from Althaus et al.
(2013, who find M = 0.174M⊙ for log(g) = 6.40 and
log10 Teff = 3.93, compared to 0.183M⊙ for the higher
log(g)), although again high values of r2 are required.
However, our cooling age for the secondary is a factor of
2–3 smaller than the cooling age of > 4Gyr for the pri-
mary predicted by the Althaus et al. (2013) models for
the lower mass. This might be a reflection of the non-
monotonic evolution experienced by some ELM WDs,
even though NLTT 11748 seems to have a low enough
mass that it would cool in a simpler manner. Further
constraints on the mass ratio from eclipse timing or di-
rect detection of the secondary’s spectrum (the inferred
values of K2 in Table 2 vary significantly) could help
resolve this question.
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