66 research outputs found

    Analytical drain‐current model of p‐ and n‐channel OTFTs for circuit simulation

    Get PDF
    Organic thin-film transistors (OTFTs) are an emerging technology for large scale circuit integration, owing the availability of both p- and n- channel devices. For the technology development and the design of circuits and digital systems, the accurate physical modeling is mandatory. In this work we propose an unified analytical model for both p- and n- type OTFTs. The model is physically based and accounts for a double exponential density of states (DOS). It is simple, symmetric and accurately describes the below-threshold, linear, and saturation regimes via a unique formulation. The model is eventually validated with the measurements of complementary OTFTs fabricated in a fullyprinted technolog

    Printed organic TFTs on flexible substrate for complementary circuits

    Get PDF
    Organic Thin film Transistors (OTFT) have been widely investigated in these last years as potential candidate for the development of low cost, flexible and lightweight active-matrix backplanes for display applications. Indeed the organic semiconductors provide both promising electrical performances tunable by chemistry and the ability to be processed at low temperature with innovative printing technics on various large scale substrates. Thanks to the recent developments on both n-type and p-type solution-processed organic semiconductors, we have developed a printable organic complementary technology compatible with flexible PEN substrates. By combining state of the art materials exhibiting mobility in the range of 1 cm 2 /V.s and silicon inspired compact modeling and simulation approach, we were able to design and fabricate circuit's building blocks that provide the switching, digital and analog functions required for the fabrication of printed systems on foil

    Therapeutically expanded human regulatory T-cells are super-suppressive due to HIF1A induced expression of CD73.

    Get PDF
    The adoptive transfer of regulatory T-cells (Tregs) is a promising therapeutic approach in transplantation and autoimmunity. However, because large cell numbers are needed to achieve a therapeutic effect, in vitro expansion is required. By comparing their function, phenotype and transcriptomic profile against ex vivo Tregs, we demonstrate that expanded human Tregs switch their metabolism to aerobic glycolysis and show enhanced suppressive function through hypoxia-inducible factor 1-alpha (HIF1A) driven acquisition of CD73 expression. In conjunction with CD39, CD73 expression enables expanded Tregs to convert ATP to immunosuppressive adenosine. We conclude that for maximum therapeutic benefit, Treg expansion protocols should be optimised for CD39/CD73 co-expression

    Formation of the Isthmus of Panama

    Get PDF
    The formation of the Isthmus of Panama stands as one of the greatest natural events of the Cenozoic, driving profound biotic transformations on land and in the oceans. Some recent studies suggest that the Isthmus formed manymillions of years earlier than the widely recognized age of approximately 3 million years ago (Ma), a result that if true would revolutionize our understanding of environmental, ecological, and evolutionary change across the Americas. To bring clarity to the question of when the Isthmus of Panama formed, we provide an exhaustive review and reanalysis of geological, paleontological, and molecular records. These independent lines of evidence converge upon a cohesive narrative of gradually emerging land and constricting seaways,withformationof theIsthmus of Panama sensustricto around 2.8 Ma. The evidence used to support an older isthmus is inconclusive, and we caution against the uncritical acceptance of an isthmus before the Pliocene.Facultad de Ciencias Naturales y Muse

    CM-Path Molecular Diagnostics Forum-consensus statement on the development and implementation of molecular diagnostic tests in the United Kingdom.

    Get PDF
    BACKGROUND: Pathology has evolved from a purely morphological description of cellular alterations in disease to our current ability to interrogate tissues with multiple 'omics' technologies. By utilising these techniques and others, 'molecular diagnostics' acts as the cornerstone of precision/personalised medicine by attempting to match the underlying disease mechanisms to the most appropriate targeted therapy. METHODS: Despite the promises of molecular diagnostics, significant barriers have impeded its widespread clinical adoption. Thus, the National Cancer Research Institute (NCRI) Cellular Molecular Pathology (CM-Path) initiative convened a national Molecular Diagnostics Forum to facilitate closer collaboration between clinicians, academia, industry, regulators and other key stakeholders in an attempt to overcome these. RESULTS: We agreed on a consensus 'roadmap' that should be followed during development and implementation of new molecular diagnostic tests. We identified key barriers to efficient implementation and propose possible solutions to these. In addition, we discussed the recent reconfiguration of molecular diagnostic services in NHS England and its likely impacts. CONCLUSIONS: We anticipate that this consensus statement will provide practical advice to those involved in the development of novel molecular diagnostic tests. Although primarily focusing on test adoption within the United Kingdom, we also refer to international guidelines to maximise the applicability of our recommendations
    • 

    corecore