40 research outputs found

    Di-μ-chlorido-bis­{[2-(morpholinometh­yl)phenyl-κ2 C 1,N]palladium(II)}

    Get PDF
    The title compound, [Pd2(C11H14NO)2Cl2], has a dimeric structure with Cl atoms bridging the two Pd atoms, one half of the mol­ecule being generated by symmetry due to the crystallographic inversion centre located in the middle of the perfectly planar Pd2Cl2 ring. The five-membered ring adopts an envelope conformation, while the morpholino group has a chair conformation. The geometry around the metal centres is distorted square-planar, as a result of a strong intra­molecular N→Pd coordination trans to a Pd—Cl bond. In the crystal structure, the dimeric structure is strengthened by inter­molecular C—H⋯Cl hydrogen bonds. C—H⋯Cphen­yl inter­actions link the dimers into a columnar supra­molecular array along the a axis; the dimers are further connected by C—H⋯Ph inter­actions into a three-dimensional supra­molecular arrangement

    Determination of changes in the microbial and chemical composition of Taga cheese during maturation

    Get PDF
    Publication history: Accepted - 9 November 2020; Published online - 3 December 2020Țaga cheese is a traditional Romanian smear-ripened cheese made from bovine milk and identified with the name of the village and caves where it is produced. As no previously reported microbiological and chemical studies have been undertaken on this product, this research aimed to investigate the microbiological and biochemical characteristics which ensure the uniqueness of Țaga cheese during the ripening process, to inform producers as to key quality determinants. Cheese samples, consisting of retail blocks, were collected on days 2, 5, 12, 18, and 25 of the ripening process. The evolution of lactic microbiota during the production and maturation of traditional cheeses involves isolating lactic acid microorganisms present in cheese. Cheese samples were analyzed for pH, fat, NaCl, fatty acids, and volatile compounds. The microbial ecosystem naturally changes during the maturation process, leading to variation in the microorganisms involved during ripening. Our results show that specific bacteria were identified in high levels during the entire ripening process and may be responsible for milk fat lipolysis contributing directly to cheese flavor by imparting detailed fatty acid flavor notes, or indirectly as precursors formation of other flavor compounds.This paper was published with the support of the Romanian Ministry of Research and Innovation through Program 1 - Development of the National Research and Development System, Subprogram 1.2-Institutional Performance - Projects for Financing the Excellence in CDI, Contract No. 37PFE-2018-2020

    Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo

    Get PDF
    While small interfering RNAs (siRNAs) have been rapidly appreciated to silence genes, efficient and non-toxic vectors for primary cells and for systemic in vivo delivery are lacking. Several siRNA-delivery vehicles, including cell-penetrating peptides (CPPs), have been developed but their utility is often restricted by entrapment following endocytosis. Hence, developing CPPs that promote endosomal escape is a prerequisite for successful siRNA implementation. We here present a novel CPP, PepFect 6 (PF6), comprising the previously reported stearyl-TP10 peptide, having pH titratable trifluoromethylquinoline moieties covalently incorporated to facilitate endosomal release. Stable PF6/siRNA nanoparticles enter entire cell populations and rapidly promote endosomal escape, resulting in robust RNAi responses in various cell types (including primary cells), with minimal associated transcriptomic or proteomic changes. Furthermore, PF6-mediated delivery is independent of cell confluence and, in most cases, not significantly hampered by serum proteins. Finally, these nanoparticles promote strong RNAi responses in different organs following systemic delivery in mice without any associated toxicity. Strikingly, similar knockdown in liver is achieved by PF6/siRNA nanoparticles and siRNA injected by hydrodynamic infusion, a golden standard technique for liver transfection. These results imply that the peptide, in addition to having utility for RNAi screens in vitro, displays therapeutic potential

    Antagonist Temperature Variation Affects the Photosynthetic Parameters and Secondary Metabolites of <i>Ocimum basilicum</i> L. and <i>Salvia officinalis</i> L.

    No full text
    Climate change is one of the main challenges for actual and future generations. Global warming affects plants and animals and is responsible for considerable crop loss. This study studied the influence of antagonist successive stresses, cold–heat and heat–cold, on two medicinal plants Ocimum basilicum L. and Salvia officinalis L. The photosynthetic parameters decreased for plants under the variation of subsequent stress. Net assimilation rates and stomatal conductance to water vapor are more affected in the case of plants under cold–heat consecutive stress than heat–cold successive stress. Emissions of volatile organic compounds have been enhanced for plants under successive stress when compared with control plants. Chlorophyll concentrations for plants under successive stress decreased for basil and sage plants. The total phenolic and flavonoid contents were not affected by the successive stresses when compared with the plants under only one type of treatment

    Membrane-Active Peptides and Their Potential Biomedical Application

    No full text
    Membrane-active peptides (MAPs) possess unique properties that make them valuable tools for studying membrane structure and function and promising candidates for therapeutic applications. This review paper provides an overview of the fundamental aspects of MAPs, focusing on their membrane interaction mechanisms and potential applications. MAPs exhibit various structural features, including amphipathic structures and specific amino acid residues, enabling selective interaction with multiple membranes. Their mechanisms of action involve disrupting lipid bilayers through different pathways, depending on peptide properties and membrane composition. The therapeutic potential of MAPs is significant. They have demonstrated antimicrobial activity against bacteria and fungi, making them promising alternatives to conventional antibiotics. MAPs can selectively target cancer cells and induce apoptosis, opening new avenues in cancer therapeutics. Additionally, MAPs serve as drug delivery vectors, facilitating the transport of therapeutic cargoes across cell membranes. They represent a fascinating class of biomolecules with significant potential in basic research and clinical applications. Understanding their mechanisms of action and designing peptides with enhanced selectivity and efficacy will further expand their utility in diverse fields. Exploring MAPs holds promise for developing novel therapeutic strategies against infections, cancer, and drug delivery challenges

    Influence of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) on Photosynthetic Parameters and Secondary Metabolites of Plants from <i>Fabaceae</i> Family

    No full text
    Nonsteroidal anti-inflammatory medications (NSAIDs) are commonly used painkillers, anti-inflammatory agents, and fever reducers. They arrive in the environment from municipal wastewater and/or agriculture waste, affecting growing plants. In our study, the impact of NSAIDs, namely, diclofenac, indomethacin, naproxen, and paracetamol, on four plant species from the Fabaceae family (Cicer arietinum, Pisum sativum, Lens culinaris, and Vicia faba) was tested. The assimilation rate and stomatal conductance decreased for all plants treated with NSAIDs. Chlorophyll and carotenoid contents in the leaves of plants under stress declined by more than 15% compared with the control plants, while the flavonoids and total phenols decreased to a lesser extent. In contrast, the plants treated with NSAIDs emit terpenes and green leaf were volatile, at a level of some nmol m−2 s−1, which could influence the atmospheric reaction and ozone formation

    Silver Nanoparticles Mediated by Natural Extracts Recovered from Wastes and By-Products

    No full text
    Introduction: Current environmental problems demand an eco-friendlier approach to the chemical synthesis of metal nanoparticles (NPs) [...

    Influence of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) on Photosynthetic Parameters and Secondary Metabolites of Plants from Fabaceae Family

    No full text
    Nonsteroidal anti-inflammatory medications (NSAIDs) are commonly used painkillers, anti-inflammatory agents, and fever reducers. They arrive in the environment from municipal wastewater and/or agriculture waste, affecting growing plants. In our study, the impact of NSAIDs, namely, diclofenac, indomethacin, naproxen, and paracetamol, on four plant species from the Fabaceae family (Cicer arietinum, Pisum sativum, Lens culinaris, and Vicia faba) was tested. The assimilation rate and stomatal conductance decreased for all plants treated with NSAIDs. Chlorophyll and carotenoid contents in the leaves of plants under stress declined by more than 15% compared with the control plants, while the flavonoids and total phenols decreased to a lesser extent. In contrast, the plants treated with NSAIDs emit terpenes and green leaf were volatile, at a level of some nmol m&minus;2 s&minus;1, which could influence the atmospheric reaction and ozone formation

    Biomolecules from Plant Wastes Potentially Relevant in the Management of Irritable Bowel Syndrome and Co-Occurring Symptomatology

    No full text
    During and following the processing of a plant’s raw material, considerable amounts are wasted, composted, or redistributed in non-alimentary sectors for further use (for example, some forms of plant waste contribute to biofuel, bioethanol, or biomass production). However, many of these forms of waste still consist of critical bioactive compounds used in the food industry or medicine. Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders. The primary treatment is based on symptomatology alleviation and controlled dietary management. Thus, this review aimed to describe the possible relevance of molecules residing in plant waste that can be used to manage IBS and co-occurring symptoms. Significant evidence was found that many forms of fruit, vegetable, and medicinal plant waste could be the source of some molecules that could be used to treat or prevent stool consistency and frequency impairments and abdominal pain, these being the main IBS symptoms. While many of these molecules could be recovered from plant waste during or following primary processing, the studies suggested that enriched food could offer efficient valorization and prevent further changes in properties or stability. In this way, root, stem, straw, leaf, fruit, and vegetable pomaces were found to consist of biomolecules that could modulate intestinal permeability, pain perception, and overall gastrointestinal digestive processes
    corecore