393 research outputs found

    Interactions between U(1)U(1) Cosmic Strings: An Analytical Study

    Full text link
    We derive analytic expressions for the interaction energy between two general U(1)U(1) cosmic strings as the function of their relative orientation and the ratio of the coupling constants in the model. The results are relevant to the statistic description of strings away from critical coupling and shed some light on the mechanisms involved in string formation and the evolution of string networks.Comment: 31 pages,REVTEX, Imperial/TP/93-94/3

    Spinning particles in the vacuum C metric

    Get PDF
    The motion of a spinning test particle given by the Mathisson-Papapetrou equations is studied on an exterior vacuum C metric background spacetime describing the accelerated motion of a spherically symmetric gravitational source. We consider circular orbits of the particle around the direction of acceleration of the source. The symmetries of this configuration lead to the reduction of the differential equations of motion to algebraic relations. The spin supplementary conditions as well as the coupling between the spin of the particle and the acceleration of the source are discussed.Comment: IOP macros used, eps figures n.

    Phase Space Analysis of Quintessence Cosmologies with a Double Exponential Potential

    Full text link
    We use phase space methods to investigate closed, flat, and open Friedmann-Robertson-Walker cosmologies with a scalar potential given by the sum of two exponential terms. The form of the potential is motivated by the dimensional reduction of M-theory with non-trivial four-form flux on a maximally symmetric internal space. To describe the asymptotic features of run-away solutions we introduce the concept of a `quasi fixed point.' We give the complete classification of solutions according to their late-time behavior (accelerating, decelerating, crunch) and the number of periods of accelerated expansion.Comment: 46 pages, 5 figures; v2: minor changes, references added; v3: title changed, refined classification of solutions, 3 references added, version which appeared in JCA

    Correspondence between kinematical backreaction and scalar field cosmologies - the `morphon field'

    Get PDF
    Spatially averaged inhomogeneous cosmologies in classical general relativity can be written in the form of effective Friedmann equations with sources that include backreaction terms. In this paper we propose to describe these backreaction terms with the help of a homogeneous scalar field evolving in a potential; we call it the `morphon field'. This new field links classical inhomogeneous cosmologies to scalar field cosmologies, allowing to reinterpret, e.g., quintessence scenarios by routing the physical origin of the scalar field source to inhomogeneities in the Universe. We investigate a one-parameter family of scaling solutions to the backreaction problem. Subcases of these solutions (all without an assumed cosmological constant) include scale-dependent models with Friedmannian kinematics that can mimic the presence of a cosmological constant or a time-dependent cosmological term. We explicitly reconstruct the scalar field potential for the scaling solutions, and discuss those cases that provide a solution to the Dark Energy and coincidence problems. In this approach, Dark Energy emerges from morphon fields, a mechanism that can be understood through the proposed correspondence: the averaged cosmology is characterized by a weak decay (quintessence) or growth (phantom quintessence) of kinematical fluctuations, fed by `curvature energy' that is stored in the averaged 3-Ricci curvature. We find that the late-time trajectories of those models approach attractors that lie in the future of a state that is predicted by observational constraints.Comment: 36 pages and 6 Figures, matches published version in Class.Quant.Gra

    Leptogenesis through direct inflaton decay to light particles

    Full text link
    We present a scenario of nonthermal leptogenesis following supersymmetric hybrid inflation, in the case where inflaton decay to both heavy right handed neutrino and SU(2)_L triplet superfields is kinematically disallowed. Lepton asymmetry is generated through the decay of the inflaton into light particles by the interference of one-loop diagrams with right handed neutrino and SU(2)_L triplet exchange respectively. We require superpotential couplings explicitly violating a U(1) R-symmetry and R-parity. However, the broken R-parity need not have currently observable low-energy signatures. Also, the lightest sparticle can be stable. Some R-parity violating slepton decays may, though, be detectable in the future colliders. We take into account the constraints from neutrino masses and mixing and the preservation of the primordial lepton asymmetry.Comment: 11 pages including 3 figures, uses Revtex, minor corrections, references adde

    Cosmic Strings and Superstrings

    Full text link
    Cosmic strings are predicted by many field-theory models, and may have been formed at a symmetry-breaking transition early in the history of the universe, such as that associated with grand unification. They could have important cosmological effects. Scenarios suggested by fundamental string theory or M-theory, in particular the popular idea of brane inflation, also strongly suggest the appearance of similar structures. Here we review the reasons for postulating the existence of cosmic strings or superstrings, the various possible ways in which they might be detected observationally, and the special features that might discriminate between ordinary cosmic strings and superstrings.Comment: Minor errors corrected and some references added, 34 pages, 6 figure

    Interacting polytropic gas model of phantom dark energy in non-flat universe

    Full text link
    By introducing the polytropic gas model of interacting dark energy, we obtain the equation of state for the polytropic gas energy density in a non-flat universe. We show that for even polytropic index by choosing K>Ba3nK>Ba^{\frac{3}{n}}, one can obtain ωΛeff<1\omega^{\rm eff}_{\Lambda}<-1, which corresponds to a universe dominated by phantom dark energy.Comment: 7 page

    From training to artisanal practice : rethinking choreographic relationships in modern dance

    Full text link
    In the first part of the twentieth century early modern dancers created both a new art form and the forms of group social organisation that were its condition of possibility. This paper critically examines the balletic and disciplinary &lsquo;training&rsquo; model of dancer formation and proposes that the assumption of training in dance can obscure other ways of understanding dance-making relationships and other values in early modern dance. An &lsquo;artisanal&rsquo; mode of production and knowledge transmission based on a non-binary relationship between&nbsp;&lsquo;master&rsquo; and apprentice and occurring in a quasi-domestic and personalised space of some intimacy is proposed as a more pertinent way to think the enabling conditions of modern dance creation
    corecore