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4 Facoltà di Ingegneria, Università ‘Campus Biomedico’, Via E Longoni 47, I-00155 Rome, Italy
5 Dipartimento di Fisica, Università di Lecce, Lecce, Italy
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Abstract
The motion of a spinning test particle given by the Mathisson–Papapetrou
equations is studied on an exterior vacuum C metric background spacetime
describing the accelerated motion of a spherically symmetric gravitational
source. We consider circular orbits of the particle around the direction of
acceleration of the source. The symmetries of this configuration lead to the
reduction of the differential equations of motion to algebraic relations. The
spin supplementary conditions as well as the coupling between the spin of
the particle and the acceleration of the source are discussed.

PACS number: 04.20.Cv

1. Introduction

In a recent paper [1], the absence of spin–acceleration coupling has been examined via wave
perturbations of the vacuum C metric [2–6], which represents the static exterior gravitational
field of a spherical mass M that is accelerated uniformly with acceleration A such that
MA < 1/(3

√
3). This gravitational field may be considered to be a nonlinear superposition

of the Rindler and Schwarzschild spacetimes. The aim of the present work is to investigate the
motion of a classical spinning test particle in the C metric using the Mathisson–Papapetrou
equations [7, 8]. For the sake of simplicity, we confine our analysis to motion along circular
orbits about the direction of acceleration. We find that for a given circular orbit the results
are unchanged when the particle spin flips and at the same time the sense of motion reverses,
a circumstance that is consistent with time-reversal invariance. Our results thus indicate that
a spin–acceleration coupling analogous to the spin–rotation coupling [9, 10] does not exist.
This particle result thus reinforces and complements the previous wave result [1].
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This paper is organized as follows: in section 2, we present a brief discussion of the
geometric properties of circular orbits around the direction of acceleration of the C metric. In
section 3, we discuss the motion of spinning test particles along the circular orbits for the three
standard spin supplementary conditions and determine the allowed orbits and spin directions.
Section 4 contains a discussion of our results.

2. Vacuum C metric and circular orbits

In its restricted interpretation, the vacuum C metric describes the static gravitational field
associated with a uniformly accelerated mass with MA < 1/(3

√
3) [2, 3]; it is of Petrov-type

D and belongs to the Weyl class of solutions of the Einstein equations [5]. In the {u, r, θ, φ}
coordinate system, the C metric takes the form

ds2 = −H du2 − 2du dr + 2Ar2 sin θ du dθ +
r2 sin2 θ

G
dθ2 + r2G dφ2, (2.1)

where G and H are given by

G(θ) = 1 − cos2 θ − 2MA cos3 θ,

H(r, θ) = 1 − 2M

r
− A2r2(1 − cos2 θ − 2MA cos3 θ)

− 2Ar cos θ(1 + 3MA cos θ) + 6MA cos θ. (2.2)

The constants M > 0 and A > 0 denote the mass and acceleration of the source,
respectively. Unless specified otherwise, we choose units such that the gravitational constant
and the speed of light in vacuum are unity. Moreover, we assume that the C metric has
signature +2; to preserve this signature, we must have G > 0. As mentioned above, it turns
out that the physical region of interest in this case corresponds to MA < 1/(3

√
3) [4, 11–13] .

The metric (2.1) can be seen to be a nonlinear superposition of two metrics, one associated
with a Schwarzschild black hole (case A = 0) and the other corresponding to a uniformly
accelerating particle (case M = 0) [2, 3]. The C metric has event horizons (which are also
Killing horizons) given by hypersurfaces of the form r = r(θ) that are solutions of H = 0.
These can be determined exactly. To this end, let us introduce the new variable [6]

W = Ar

1 − Ar cos θ
(2.3)

so that H = 0 becomes

W 3 − W + 2MA = 0. (2.4)

Following [6], let us also introduce an acceleration lengthscale based on A > 0: LA = 1
3
√

3A
.

There are three cases depending on whether M is less than, equal to or greater than LA. As
we are interested only in the case M < LA, the solutions of (2.4) can be written as

W1 = 2Û , W2 = −Û +
√

3V̂ , W3 = −Û −
√

3V̂ , (2.5)

where

Û + iV̂ = 1√
3

(
− M

LA

+ i

√
1 − M2

L2
A

)1/3

. (2.6)

It is worth noting that, when M → 0, the solution W1 gives the Rindler horizon
r = [A(1 + cos θ)]−1, while, when A → 0, the solution W2 gives the Schwarzschild
horizon r = 2M; W3 gives instead a negative value for r and should be rejected. Thus,
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Figure 1. The accessible spacetime region (not shaded) in the (X, Y ) plane with X = r̂ sin θ

(abscissa) and Y = r̂ cos θ (ordinate), r̂ = r/M , is shown for the value of the parameter MA = 0.1.
The upper curve represents the Rindler horizon while the lower curve represents the Schwarzschild
horizon. The forbidden conical region corresponds to negative values of the metric function G,
i.e., to signature changes which are not considered here.

r = [A(cos θ + 1/W1)]−1 and r = [A(cos θ + 1/W2)]−1 correspond to the modified Rindler
and Schwarzschild horizons, respectively.

The C metric has two commuting hypersurface-orthogonal Killing vectors, one timelike
(∂u) and the other spacelike (∂φ).

To illustrate this situation, in figure 1 we have shown the accessible spacetime region in
the (r, θ) plane for the value of the metric parameter MA = 0.1. In this plot, it is possible
to identify both the Rindler horizon (HR) and the Schwarzschild horizon (HS) as well as the
forbidden conical region corresponding to negative values of the metric function G, i.e., to
signature changes.

In the spacetime represented by the metric (2.1), let us consider as ‘fiducial observers’ the
family of static observers with 4-velocity aligned with the Killing direction ∂u, eû = H−1/2∂u;
it is convenient to introduce an orthonormal frame adapted to these observers

eû = H−1/2∂u, er̂ = H−1/2[H∂r − ∂u],

eθ̂ = G1/2

[
Ar∂r +

1

r sin θ
∂θ

]
, eφ̂ = G−1/2

r
∂φ.

(2.7)

We are interested in the study of circular motion of test particles along the φ direction
with constant speed and at a fixed value of the polar angle θ as illustrated in figure 2; so the
family of test particles is characterized by the following (timelike) 4-velocity U

U = �ζ [∂u + ζ∂φ] = γ [eû + νeφ̂], (2.8)

where ζ and ν are the angular velocity and linear velocity parametrizations, respectively, of
the whole family such that

ν = r

(
G

H

)1/2

ζ. (2.9)
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Figure 2. Schematic diagram representing circular orbits under consideration in this paper. The
orbital plane is parallel to the θ = π/2 plane. The spherical source M is accelerated with uniform
acceleration A in the θ = π direction.

Here, �ζ is defined by the timelike condition U · U = −1 as

−�−2
ζ = guu + ζ 2gφφ = −H + ζ 2r2G = − H

γ 2
(2.10)

and γ = −U · eû = (1 − ν2)−1/2 = �ζH
−1/2 is the Lorentz factor. Note that �ζ , ζ, ν and γ

are all functions of r and θ only; therefore, they remain constant along the orbit (see figure 2).
We also define the unit direction orthogonal to U in the (eû, eφ̂) 2-space

Eφ̂ = γ [νeû + eφ̂], (2.11)

which is a vector field defined only along the worldline of U; in fact, its definition requires the
relative velocity field ν of U with respect to fiducial observers eû which only exist along U.

Two quantities are relevant for the discussion below: the acceleration of the line U,
a(U) = DU/dτU = ∇UU , where τU is the proper time along U, and the directional derivative
along U of the local φ direction as seen by the observer U, DEφ̂/dτU = ∇UEφ̂ . A direct
evaluation shows that both these quantities belong to the (er̂ , eθ̂ ) plane and are given by

DU

dτU

= γ 2
[
kr̂

(
ν2 − ν2

(r)

)
er̂ + kθ̂

(
ν2 − ν2

(θ)

)
eθ̂

]
, (2.12)

DEφ̂

dτU

= γ 2ν

(
kr̂

γ 2
(r)

er̂ +
kθ̂

γ 2
(θ)

eθ̂

)
, (2.13)

where

ν2
(r) = M − Ar2[GAr + cos θ(1 + 3AM cos θ)]

rH
, γ 2

(r) = 1
/(

1 − ν2
(r)

)
,

ν2
(θ) = GAr

GAr + cos θ(1 + 3AM cos θ)
, γ 2

(θ) = 1
/(

1 − ν2
(θ)

)
,

(2.14)
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and the Lie relative curvature [14, 15] of the orbit k(Lie) ≡ k = −∇ ln (
√

gφφ) has been
introduced with frame components

kr̂ = −
√

H

r
, kθ̂ = −GAr + cos θ(1 + 3AM cos θ)

r
√

G
, (2.15)

and magnitude κ = (
k2

r̂ + k2
θ̂

)1/2
.

Analogously, it is easy to derive the directional derivatives along U of er̂ and eθ̂ , which
instead belong to the (eû, eφ̂) plane:

Der̂

dτU

= γ 2kr̂

[(
ν2 − ν2

(r)

)
U − ν

γ 2
(r)

Eφ̂

]
, (2.16)

Deθ̂

dτU

= γ 2kθ̂

[(
ν2 − ν2

(θ)

)
U − ν

γ 2
(θ)

Eφ̂

]
. (2.17)

The following useful relations hold

k2
r̂ ν

2
(r) + k2

θ̂
ν2

(θ) = M

r3
, A

√
G = −kθ̂ ν

2
(θ). (2.18)

A detailed analysis of circular orbits, ‘special’ for geometrical or kinematical reasons, is
considered in [16].

The only non-vanishing components of the 4-acceleration a(U) = ∇UU can be
conveniently rewritten as

a(U)r̂ = γ 2kr̂

(
ν2 − ν2

(r)

)
, a(U)θ̂ = γ 2kθ̂

(
ν2 − ν2

(θ)

)
. (2.19)

Conditions for circular geodesics, namely, (a(U)r̂ , a(U)θ̂ ) = (0, 0) (or equivalently, ν =
±ν(r) and ν2

(r) = ν2
(θ)) can easily be obtained from (2.19); it follows that for a fixed angle θ ,

only the value r = rg is allowed with

rg = 1

2A

3AMG + (AM)1/2[cos θ(4 + AM cos3 θ) + 9AM(3 − 2G)]1/2

G + cos θ [cos θ + 3AM(2 − AM cos3 θ)]
, (2.20)

where

ν ≡ νg± = ±
√

ArgG

ArgG + cos θ(1 + 3MA cos θ)
, γg = 1/

√
1 − ν2

g±. (2.21)

Note that rg and νg± depend on θ only. In the same diagram of figure 1, the curve of the r and
θ values corresponding to circular geodesics is shown in figure 3.

The circular geodesics of the C metric, which represents the gravitational potentials of
a Schwarzschild black hole accelerating uniformly with acceleration A < 1/(3

√
3M) along

the θ = π direction, have been obtained with the assumption that A > 0; moreover, the
geodesics are timelike for θ0 < θ < π/2 and spacelike for π/2 < θ < θc. There is a unique
null geodesic for θ = π/2 given by rg = 3M irrespective of the acceleration A so long as
MA < 1/(3

√
3). Here θ0 and θc depend upon MA, θ0 is given by G(θ0) = 0 and θc is

such that rg(θc) lies on the modified Schwarzschild horizon that satisfies H(rg(θc), θc) = 0,
see figure 3. In the nonrelativistic limit MA � 1, the circular geodesics reduce to the orbits
that can easily be obtained from the Newtonian theory of gravitation:

(
M

/
r2
g

)
cos θ = A

follows from (2.20) and ν2
g = (M/rg) sin2 θ from (2.20) and (2.21). Furthermore, in the

Newtonian limit ζ 2
g = M

/
r3
g .

It is interesting to consider the significance of these orbits in the gravitoelectromagnetic
analogy [6]. When one explores the correspondence between classical and quantum



714 D Bini et al

H

H

G = 0

S

R

–8

–6

–4

–2

0

2

4

6

8

–6 –4 –2 0 2 4 6 8

Figure 3. Circular geodesics exist for fixed values of θ only for certain corresponding values of r.
The solid line in the allowed region represents the location of the geodesics, which are respectively
timelike, null and spacelike above, on and below the equatorial plane θ = π/2. The pair of straight
lines dropping down from the centre correspond to the limiting value θ = θc . The value of the
parameter MA = 0.1 is the same as in figure 1.

descriptions of electron motion in the Stark effect, the circular orbits that correspond to those
under consideration here describe the classical motion of the electron in a quantum-mechanical
phenomenon, namely, the quadratic Stark effect in hydrogen [17].

The purpose of this paper is to explore the accelerated motion of classical spinning test
particles on circular orbits r = r(θ) in the C metric. We therefore turn to the investigation of
the allowed orbits for particles with spin.

3. Spinning test particles along circular orbits

The motion of a (classical) spinning test particle is described by the Mathisson–Papapetrou
equations

DP µ

dτU

= −1

2
Rµ

ναβUνSαβ ≡ Fspin
µ, (3.1)

DSµν

dτU

= P µUν − P νUµ, (3.2)

where P µ is the total 4-momentum of the particle and Sµν is the antisymmetric spin tensor.
Here, U is the timelike unit tangent vector of the ‘centre line’ that is used to perform the
multipole reduction of the energy–momentum tensor associated with the particle in order to
derive equations (3.1) and (3.2).

We assume here the centre line to be a circular orbit, i.e., U is given by (2.8). From (3.2),
contracting both sides of the second equation with Uν , one has

P µ = −(U · P)Uµ − Uν

DSµν

dτU

≡ mUµ + P µ
s , (3.3)

where m is the component of −P along U and it is usually referred to as the mass of the
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particle under the Pirani supplementary conditions (see below). Equation (3.2) implies that

Sûφ̂ = 0, Sr̂θ̂ = 0, kr̂

(
ν2

(r)Sθ̂û + νSθ̂φ̂

) − kθ̂

(
ν2

(θ)Sr̂û + νSr̂φ̂

) = 0. (3.4)

The spin tensor then takes the form

S = ωr̂ ∧ [Sr̂ûω
û + Sr̂φ̂ωφ̂] + ωθ̂ ∧ [Sθ̂ûω

û + Sθ̂φ̂ωφ̂], (3.5)

where {ωû, ωr̂ , ωθ̂ , ωφ̂} is the dual frame of (2.7). It is clear from (3.3) that Ps is orthogonal
to U; moreover, it turns out to be also aligned with Eφ̂

Ps = msEφ̂, (3.6)

where

ms ≡ ‖Ps‖ = γ
[
kr̂

(
νSr̂û + ν2

(r)Sr̂φ̂

)
+ kθ̂

(
νSθ̂û + ν2

(θ)Sθ̂φ̂

)]
(3.7)

is the component of P along Eφ̂ . It follows from (3.3) and (3.6) that the total 4-momentum
P can be written in the form P = µUp, where µ represents the magnitude of P and the unit
timelike direction Up is given by

Up = γp[eû + νpeφ̂], νp = ν + ms/m

1 + νms/m
, µ = γ

γp

(m + νms). (3.8)

Here γp = (
1 − ν2

p

)−1/2
, as expected.

Let us now consider the equation of motion (3.1). The spin force is given by

F (spin) = γ
M

r3
[(2Sûr̂ + νSr̂φ̂)er̂ − (Sûθ̂ + 2νSθ̂φ̂)eθ̂ ], (3.9)

while the term on the left-hand side of equation (3.1) can be written, from (3.3) and (3.6), as

DP

dτU

= ma(U) + ms

DEφ̂

dτU

, (3.10)

where a(U) and DEφ̂/dτU are given by (2.12) and (2.13), respectively, and the quantities µ,m

and ms remain constant along the worldline of U. Hence, (3.1) can be written as

γ

[
m

(
ν2 − ν2

(r)

)
+ ms

ν

γ 2
(r)

]
kr̂ − M

r3
(2Sûr̂ + νSr̂φ̂) = 0,

γ

[
m

(
ν2 − ν2

(θ)

)
+ ms

ν

γ 2
(θ)

]
kθ̂ +

M

r3
(Sûθ̂ + 2νSθ̂φ̂) = 0.

(3.11)

Finally, it proves useful to introduce the quadratic invariant

s2 = 1
2SµνS

µν = −S2
r̂ û − S2

θ̂ û
+ S2

r̂ φ̂
+ S2

θ̂ φ̂
, (3.12)

which is not in general constant along the trajectory of the spinning particle. It is constant,
however, in the situation under consideration in this paper.

Summarizing, the equations to be considered are: (a) the constraint equations (3.4) that
result from the evolution of the spin tensor whose nontrivial components are given in (3.5);
(b) the two equations of motion (3.11); (c) the definition of ms given in (3.7) and (d) the
quadratic invariant s introduced in (3.12). To solve these equations and, hence, to discuss
the features of the motion we need three further supplementary conditions. We shall follow
the standard approaches existing in the literature:

1. Corinaldesi–Papapetrou [18] conditions (CP): Suν = 0,
2. Pirani [19] conditions (P): SµνUν = 0,
3. Tulczyjew [20] conditions (T): SµνPν = 0.
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It is helpful to introduce the spin vector

S(SC)β = 1
2ηα

βγ δ(U(SC))αSγ δ, (3.13)

where U(SC) = (eû, U,Up) for the CP, P, T conditions, respectively, and ηαβγ δ = √−gεαβγ δ

is the unit volume 4-form constructed with the Levi-Civita alternating symbol εαβγ δ , such that
εûr̂θ̂ φ̂ = 1. It follows that in general s2 = SµSµ.

A consistent physical interpretation of the Mathisson–Papapetrou equations requires that
ŝ := s/(mr) � 1. For s = 0, the orbit of the test particle coincides with the geodesic orbit
rg = rg(θg); therefore, we expect that the circular orbit r = r(θ) of the spinning particle
should be close to such a geodesic. Hence, we assume that

r = rg + δr , θ = θg + δθ , (3.14)

where δr and δθ are of order ŝ and will only be considered to linear order in what follows. Any
given function of the particle orbit, F(r, θ), can then be written to first order in δr and δθ as

F(r, θ) = F(rg, θg) +

(
∂F

∂r

)
r=rg,θ=θg

δr +

(
∂F

∂θ

)
r=rg,θ=θg

δθ . (3.15)

In the following, we shall obtain for each SC explicit expressions in terms of r and θ for both
the linear velocity ν and the spin parameter ŝ associated with the orbit of the spinning particle.
Close to a geodesic, we shall show that all the SC cases can be summarized as

ν � νg± + σ�ν(SC), ŝ � σ�ŝ(SC), (3.16)

where the notation σ = sign(νg±) is conveniently introduced, so that σ = +1 for a
counterclockwise orbit and σ = −1 for a clockwise orbit (cf figure 2). The corresponding
angular velocity ζ and its reciprocal are

ζ± � ζg± + σ�ζ (SC),
1

ζ±
� 1

ζg±
− σ

ζ 2
g±

�ζ(SC), (3.17)

respectively, with ζg± = (νg±
√

Hg)/(rg

√
Gg). As a result, the orbital frequency turns out to

depend on the spin parameter. Explicit expressions for all of the quantities introduced above
can be found in the appendix.

3.1. The Corinaldesi–Papapetrou (CP) supplementary conditions

These are conceptually the weakest conditions that have been imposed on the spin tensor; in
general, they do not even ensure that the quadratic invariant SµνS

µν is conserved along the
path. In the simple configuration under consideration here, the CP supplementary conditions
require Sûr̂ = Sûθ̂ = 0. Equations (3.4) as well as (3.12) are identically satisfied with

(Sr̂φ̂, Sθ̂φ̂) = s

κ
(kr̂ , kθ̂ ), (3.18)

where s can be of any sign. The spin vector,

S(CP)β = 1
2ηα

βγ δ(eû)αSγ δ, (3.19)

spatial with respect to eû in this case is given by

S(CP) = −Sr̂φ̂eθ̂ + Sθ̂φ̂er̂ = s

κ
[−kr̂eθ̂ + kθ̂ er̂ ]. (3.20)

It follows from (3.7) that

ms = M

r3

sγ

κ
. (3.21)
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Finally, the spin force (see (3.9)) is given by

F (spin) = sγ ν

κ

M

r3
[kr̂er̂ − 2kθ̂ eθ̂ ], (3.22)

so that equations (3.11) reduce to

(
ν2 − ν2

(r)

) (
s +

m

γν
κ

r3

M

)
= 0, s +

(
m

γν
κ

r3

M

)
ν2 − ν2

(θ)

3 − 2ν2 − ν2
(θ)

= 0. (3.23)

Now, by eliminating s, we get the solution for ν = νs
±. If ν2 	= ν2

(r), then plugging the first
of equations (3.23) into the second, one gets νs

± = ±1 and so s = 0, which must be rejected.
The only possibility is then ν = ν(r) (see (2.14)), with s given by

s = − m

γ(r)ν(r)

κ
r3

M

ν2
(r) − ν2

(θ)

3 − 2ν2
(r) − ν2

(θ)

. (3.24)

Close to a geodesic, from (3.23) we obtain

�ν(CP) = �r
ν(r)

δr + �θ
ν(r)

δθ ,

�ŝ(CP) = −2

3
γgκg

r2
g

M

[
δr

(
�r

ν(r)
− �r

ν(θ)

)
+ δθ

(
�θ

ν(r)
− �θ

ν(θ)

)]; (3.25)

the linear velocity ν and the corresponding angular velocity ζ and its reciprocal are thus given
by (3.16) and (3.17), respectively.

3.2. The Pirani (P) supplementary conditions

It was first demonstrated by Pirani [19] that the Mathisson–Papapetrou equations with the
supplementary conditions SµνUν = 0 imply that the spin vector is Fermi–Walker transported
along the trajectory. Subsequently, Taub [21] demonstrated that these equations correspond
to the motion of a classical point particle with ‘intrinsic’ spin. The Mathisson–Papapetrou
equations were investigated in [22, 23] and it was found that of the various supplementary
conditions the only one that produces a consistent result in the massless limit is SµνUν = 0
[23]. In fact, the trajectory in this case is a null geodesic with the spin vector either parallel or
antiparallel to the direction of motion; furthermore, the helicity of the particle is conserved in
an orientable spacetime [23].

In the case under consideration here, the P supplementary conditions (SµνUν = 0) require

Sûr̂ = Sr̂φ̂ν, Sûθ̂ = Sθ̂φ̂ν. (3.26)

Using these relations one finds that equations (3.4) as well (3.12) are identically satisfied with

(Sr̂φ̂, Sθ̂φ̂) = γ s

�

(
kr̂

γ 2
(r)

,
kθ̂

γ 2
(θ)

)
, (3.27)

where

� =
(

k2
r̂

γ 4
(r)

+
k2

θ̂

γ 4
(θ)

)1/2

(3.28)

and, as before, s can be of any sign. The spin vector

S(P )β = 1
2ηα

βγ δUαSγ δ (3.29)

spatial with respect to U in this case is given by

S(P ) = 1

γ
[−Sr̂φ̂eθ̂ + Sθ̂φ̂er̂ ] = s

�

[
− kr̂

γ 2
(r)

eθ̂ +
kθ̂

γ 2
(θ)

er̂

]
. (3.30)
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Then, from (3.7) we have that

ms = −sγ 2
γ 2

(θ)k
2
r̂

(
ν2 − ν2

(r)

)
+ γ 2

(r)k
2
θ̂

(
ν2 − ν2

(θ)

)
γ 2

(r)γ
2
(θ)�

. (3.31)

Finally, the spin force (see (3.9)) is given by

F (spin) = 3sγ 2ν

�

M

r3

(
kr̂

γ 2
(r)

er̂ − kθ̂

γ 2
(θ)

eθ̂

)
, (3.32)

so that equations (3.11) reduce to

s = −mγ 2
(r)�

ν

ν2 − ν2
(r)(

κ2 − 4M
r3

) − γ 2�2
, s = −mγ 2

(θ)�

ν

ν2 − ν2
(θ)(

κ2 + 2M
r3

) − γ 2�2
, (3.33)

by solving both equations with respect to s. By eliminating s in (3.33), we get the solution
ν = νs

±:

νs
± = ±

[
1 −

6M
r3 − �2

(
γ 2

(θ) − γ 2
(r)

)
(
κ2 + 2M

r3

)
γ 2

(r) − (
κ2 − 4M

r3

)
γ 2

(θ)

]1/2

. (3.34)

Close to a geodesic, we obtain from (3.33) and (3.34) that

�ν(P) = 1

3

{
κ2

g r3
g

2M
ν2

g±
[(

�r
ν(r)

− �r
ν(θ)

)
δr +

(
�θ

ν(r)
− �θ

ν(θ)

)
δθ

]

+
(
�r

ν(r)
+ 2�r

ν(θ)

)
δr +

(
�θ

ν(r)
+ 2�θ

ν(θ)

)
δθ

}
, (3.35)

�ŝ(P ) = κg

3

r2
g

M

[
δr

(
�r

ν(r)
− �r

ν(θ)

)
+ δθ

(
�θ

ν(r)
− �θ

ν(θ)

)];
the linear velocity ν and the corresponding angular velocity ζ and its reciprocal are given by
(3.16) and (3.17), respectively.

3.3. The Tulczyjew (T) supplementary conditions

The general theory of the motion of an extended particle in a gravitational field has been
developed by Dixon (see [24] and references therein) on the basis of the dynamical equations
∇νT

µν = 0. In Dixon’s approach, when attention is limited to a pole–dipole particle and
higher multipole moments of the extended body are neglected, one recovers the Mathisson–
Papapetrou equations with the supplementary conditions SµνPν = 0. These require, in the
case under consideration here, that

Sûr̂ = Sr̂φ̂νp, Sûθ̂ = Sθ̂φ̂νp. (3.36)

Using these relations one finds that equations (3.4) as well as (3.12) are identically satisfied
with

(Sr̂φ̂, Sθ̂φ̂) = γps

�

(
kr̂

(
ν − νpν2

(r)

)
, kθ̂

(
ν − νpν2

(θ)

))
, (3.37)

where

� = [
k2

r̂

(
ν − νpν2

(r)

)2
+ k2

θ̂

(
ν − νpν2

(θ)

)2]1/2
. (3.38)

The spin vector

S(T )β = 1
2ηα

βγ δ(Up) αSγ δ (3.39)
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spatial with respect to Up in this case is given by

S(T ) = 1

γp

[−Sr̂φ̂eθ̂ + Sθ̂φ̂er̂ ] = s

�

[−kr̂

(
ν − νpν2

(r)

)
eθ̂ + kθ̂

(
ν − νpν2

(θ)

)
er̂

]
. (3.40)

Moreover, from (3.7) we have that

ms = − sγ γp

�

[
k2

r̂

(
ννp − ν2

(r)

)(
ν − νpν2

(r)

)
+ k2

θ̂

(
ννp − ν2

(θ)

)(
ν − νpν2

(θ)

)]
, (3.41)

and the spin force (see (3.9)) is given by

F (spin) = sγ γp

�

M

r3

[
(ν + 2νp)

(
ν − νpν2

(r)

)
kr̂er̂ − (2ν + νp)

(
ν − νpν2

(θ)

)
kθ̂ eθ̂

]
. (3.42)

Now, by solving both equations (3.11) with respect to s, we get

s = −m
γ

γp

ν2 − ν2
(r)

γ 2

γ 2
(r)

νm̃s + M
�r3 (2νp + ν)

(
νpν2

(r) − ν
) ,

s = − m

γγpγ 2
(θ)

γ 2 − γ 2
(θ)

γ 2

γ 2
(θ)

νm̃s − M
�r3 (νp + 2ν)

(
νpν2

(θ) − ν
) ,

(3.43)

where m̃s = ms/(sγ γp); by eliminating s, we have that νp must satisfy the following equation:

Aν2
p + Bνp + C = 0, (3.44)

with

A = 3M

r3
ν2

(r)

(
ν2 − ν2

(θ)

)
,

−B
ν

= (
ν2

(r) − ν2
(θ)

)[(
ν2 + ν4

(r)

)
k2

r̂ +
(
ν2 + ν4

(θ)

)
k2

θ̂

]
− M

r3

[(
ν2

(r) + 2ν2
(θ)

)
(1 + ν2) − 3

(
ν2 + ν2

(r)ν
2
(θ)

)]
,

C = −3
M

r3
ν2

(
ν2 − ν2

(r)

)
.

(3.45)

Let ν(±)
p = (−B ± √

�)/(2A) be the solutions of (3.44). The reality condition for these
solutions requires that ν take values outside the regions implicitly defined by the equation
� ≡ B2 − 4AC = 0. By substituting νp = ν(±)

p into either of equations (3.43), we obtain
a relation between ν and s, which must be considered together with the following further
equation directly resulting from the definition (3.8) of νp:

s = −m
ν − νp

γ γpm̃s(1 − ννp)

∣∣∣∣
νp=ν

(±)
p

. (3.46)

As a result, solutions for both quantities νs
± and s can be derived explicitly from (3.43) and

(3.46).
Close to a geodesic we obtain the same results as in the case of P supplementary conditions

with

ν(±)
p = ν + O(ŝ2); (3.47)

so the linear velocity ν and the corresponding angular velocity ζ and its reciprocal are given
by (3.16) and (3.17), respectively, with �ν(T ) ≡ �ν(P).
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4. Discussion

The test-particle approximation in the case of the Mathisson–Papapetrou equations for a
spinning particle implies that the acceleration of the worldline due to the spin force defined by
(3.1) should be relatively small. This means, in the case under consideration, that qualitatively

spin force/Newtonian force ∼ [(GM/r3)s/c]

[GMm/r2]
= s

(mcr)
� 1, (4.1)

since in the multipole expansion around U, the dipole term should be smaller than the monopole
term; we neglect quadrupole and higher order terms in (3.1) and (3.2). The condition (4.1)
can be expressed as rM � r , where rM is the Møller radius of the test mass [25].

It follows from this condition that spinning test particles can be maintained on circular
orbits in the vacuum C metric only for allowed values of r and θ that are close to those of
geodesic circular orbits that have been discussed in section 2 for spinless test particles. Thus,
we have considered a one-parameter family of solutions in each of the CP, P and T cases.
That is, the spinning particle follows a circular orbit such that r − rg and θ − θg are linear
in ŝ and higher order terms in ŝ have been neglected. We find that the orbital frequency is in
general spin dependent, but there is no clock effect in contrast to the Schwarzschild case [26],
since for a given orbit, the orbital frequency is unchanged under the transformation ν → −ν

and ŝ → −ŝ. In fact, it follows from (3.17) that the difference in the arrival times after one
complete revolution with respect to a static observer vanishes

�t(+,+;−,−) = 2π

(
1

ζ(SC,+,+)

+
1

ζ(SC,−,−)

)
= 0, (4.2)

where ζ(SC,±,±) denotes the angular velocity of U derived under a particular choice of
supplementary conditions and corresponding to a σ = ± orbit with spin-up/down alignment.
This is a consequence of the fact that the linear velocity ν and the spin parameter ŝ must
both have the same sign as νg±, see (3.16). In the Schwarzschild case, instead, when the
motion is confined to the equatorial plane the Mathisson–Papapetrou equations give rise to
a unique relation between ν and ŝ, which becomes linear in the limit of small values of the
spin parameter. All combinations of the relative signs between rotation and the two spin-up
and spin-down orientations along the z-axis are allowed, and so a non-zero clock effect can
appear.

One may consider this circumstance intuitively as follows: in the case of the Schwarzschild
circular equatorial orbits of a spinning test particle with its spin normal to the equatorial plane,
one may imagine a transformation of coordinates to the frame comoving with the test particle.
In this frame, the Schwarzschild source follows circular geodesic orbits about the spinning test
particle; therefore, one would qualitatively expect the existence of a gravitomagnetic clock
effect proportional to the specific angular momentum of the test particle. This effect would
then be expected to occur in the original coordinate system as well. It is interesting to observe
that a similar argument for the case of the C metric would fail, since the orbits of the source
in the frame comoving with the test particle would not be geodesics by assumption.

Appendix. Expansion of kinematical quantities around a geodesic

The expansion of the metric functions G and H, the linear velocities ν(r) and ν(θ) and the
components of the Lie curvature close to a selected geodesic can be expressed as
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G � Gg + 2A sin θg

Ggrg

ν2
g±γ 2

g±
δθ ≡ Gg + �θ

Gδθ ,

H � Hg + 2
ν2

g±Hg

rg

δr + 2A sin θg(1 − Arg cos θg)[rg − 3M(1 − Arg cos θg)]δθ

≡ Hg + �r
Hδr + �θ

Hδθ ,

kr̂ � −
√

Hg

rg

+

√
Hg

γ 2
g±r2

g

δr − �θ
H

2rg

√
Hg

δθ ≡ k
g

r̂ + �r
kr̂

δr + �θ
kr̂

δθ ,

kθ̂ � −A
√

Gg

ν2
g±

+
A

√
Gg

ν2
g±γ 2

g±rg

δr +
1

2rg

√
Gg

[
2 sin θg(1 + 6AM cos θg) + Arg�

θ
G

(
1

ν2
g±

− 2

)]
δθ

≡ k
g

θ̂
+ �r

kθ̂
δr + �θ

kθ̂
δθ ,

κ � (
k

g

r̂
2 + k

g

θ̂

2
)1/2

+
k

g

r̂ �
r
kr̂

+ k
g

θ̂
�r

kθ̂(
k

g

r̂
2 + k

g

θ̂
2
)1/2 δr +

k
g

r̂ �
θ
kr̂

+ k
g

θ̂
�θ

kθ̂(
k

g

r̂
2 + k

g

θ̂
2
)1/2 δθ ≡ κg + �r

κδr + �θ
κδθ ,

ν(r) � νg± −
[

A2Ggrg

Hgνg±

(
1

ν2
g±

+
1

2

)
+

νg±
2rg

(
1 + 2ν2

g±
)]

δr

+ νg±

{
A

�r
H

[−Arg�
θ
G + sin θg(1 + 6AM cos θg)

] − �θ
H

2Hg

}
δθ

≡ νg± + �r
ν(r)

δr + �θ
ν(r)

δθ ,

ν(θ) � νg± +
νg±

2γ 2
g±rg

δr +
νg±

2γ 2
g±

[
�θ

G

Gg

+
2 sin2 θg

�θ
G

(1 + 6AM cos θg)

]
δθ

≡ νg± + �r
ν(θ)

δr + �θ
ν(θ)

δθ , (A.1)

where Gg = G(θg) and Hg = H(rg, θg). As a result, we obtain for each choice of SC the
following approximate expressions for the linear velocity ν and the spin parameter ŝ:

ν � νg± +
[
�r

ν
(SC)δr + �θ

ν
(SC)δθ

] ≡ νg± + σ�ν(SC)

ŝ � [
�r

ŝ
(SC)δr + �θ

ŝ
(SC)δθ

] ≡ σ�ŝ(SC).
(A.2)

The corresponding angular velocity ζ and its reciprocal are then given by

ζ± � ζg± + σ
|ζg±|
|νg±|

{
�ν(SC) − |νg±|

2

[
δr

rg

(
2 − rg

�r
H

Hg

)
+ δθ

(
�θ

G

Gg

− �θ
H

Hg

)]}
≡ ζg± + σ�ζ (SC) (A.3)

and

1

ζ±
� 1

ζg±
− σ

|ζg±‖νg±|
{
�ν(SC) − |νg±|

2

[
δr

rg

(
2 − rg

�r
H

Hg

)
+ δθ

(
�θ

G

Gg

− �θ
H

Hg

)]}

≡ 1

ζg±
− σ

ζ 2
g±

�ζ(SC). (A.4)
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[11] Pravda V and Pravdová A 2000 Czech. J. Phys. 50 333
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