6,524 research outputs found

    String mediated phase transitions

    Get PDF
    It is demonstrated from first principles how the existence of string-like structures can cause a system to undergo a phase transition. In particular, the role of topologically stable cosmic string in the restoration of spontaneously broken symmetries is emphasized. How the thermodynamic properties of strings alter when stiffness and nearest neighbor string-string interactions are included is discussed

    Fanny Copeland and the geographical imagination

    Get PDF
    Raised in Scotland, married and divorced in the English south, an adopted Slovene, Fanny Copeland (1872 – 1970) occupied the intersection of a number of complex spatial and temporal conjunctures. A Slavophile, she played a part in the formation of what subsequently became the Kingdom of Yugoslavia that emerged from the First World War. Living in Ljubljana, she facilitated the first ‘foreign visit’ (in 1932) of the newly formed Le Play Society (a precursor of the Institute of British Geographers) and guided its studies of Solčava (a then ‘remote’ Alpine valley system) which, led by Dudley Stamp and commended by Halford Mackinder, were subsequently hailed as a model for regional studies elsewhere. Arrested by the Gestapo and interned in Italy during the Second World War, she eventually returned to a socialist Yugoslavia, a celebrated figure. An accomplished musician, linguist, and mountaineer, she became an authority on (and populist for) the Julian Alps and was instrumental in the establishment of the Triglav National Park. Copeland’s role as participant observer (and protagonist) enriches our understanding of the particularities of her time and place and illuminates some inter-war relationships within G/geography, inside and outside the academy, suggesting their relative autonomy in the production of geographical knowledge

    New type scalar fields for cosmic acceleration

    Get PDF
    We present a model where a non-conventional scalar field may act like dark energy leading to cosmic acceleration. The latter is driven by an appropriate field configuration, which result in an effective cosmological constant. The potential role of such a scalar in the cosmological constant problem is also discussed.Comment: 6 page

    On the reliability of inflaton potential reconstruction

    Get PDF
    If primordial scalar and tensor perturbation spectra can be inferred from observations of the cosmic background radiation and large-scale structure, then one might hope to reconstruct a unique single-field inflaton potential capable of generating the observed spectra. In this paper we examine conditions under which such a potential can be reliably reconstructed. For it to be possible at all, the spectra must be well fit by a Taylor series expansion. A complete reconstruction requires a statistically-significant tensor mode to be measured in the microwave background. We find that the observational uncertainties dominate the theoretical error from use of the slow-roll approximation, and conclude that the reconstruction procedure will never insidiously lead to an irrelevant potential.Comment: 16 page LaTeX file with eight postscript figures embedded with epsf; no special macros neede

    String Dilaton Fluid Cosmology

    Get PDF
    We investigate (n+1)(n+1)-dimensional string-dilaton cosmology with effective dilaton potential in presence of perfect-fluid matter.We get exact solutions parametrized by the constant \gam of the state equation p=(\gam-1)\rho, the spatial dimension number nn, the bulk of matter, and the spatial curvature constant kk. Several interesting cosmological behaviours are selected. Finally we discuss the recovering of ordinary Einstein gravity starting from string dominated regime and a sort of asymptotic freedom due to string effective coupling.Comment: 16 pages, Latex, submitted to Int. Jou. Mod. Phys.

    S1×S2S^1 \times S^2 wormholes and topological charge

    Full text link
    I investigate solutions to the Euclidean Einstein-matter field equations with topology S1×S2×RS^1 \times S^2 \times R in a theory with a massless periodic scalar field and electromagnetism. These solutions carry winding number of the periodic scalar as well as magnetic flux. They induce violations of a quasi-topological conservation law which conserves the product of magnetic flux and winding number on the background spacetime. I extend these solutions to a model with stable loops of superconducting cosmic string, and interpret them as contributing to the decay of such loops.Comment: 18 pages (includes 6 figs.), harvmac and epsf, CU-TP-62

    A formative review of physical activity interventions for minority ethnic populations in England

    Get PDF
    Background: Physical activity (PA) levels are lower among some UK minority ethnic groups than the majority White British population. Barriers to participation have been examined and a variety of tailored interventions have emerged. This study documents the characteristics and logic of local adaptations; a vital first step in evaluating such innovations. Methods: 58 PA interventions from an English PA dataset were examined to establish the characteristics of programmes focussed on minority ethnic populations. From these 58, three case studies were examined to reveal the nature of tailoring and the logic underpinning it; employing documentary analysis and qualitative interviews. Results: Interventions typically aimed to improve both health and social outcomes, were largely publically and charitably funded and sought to engage the most inactive groups. Tailoring was based on six principles including using community resources to promote the intervention and accommodating varying degrees of cultural identification. Additionally, tailoring interventions were intended to build capacity for sustainability. Conclusions: PA interventions tailored to the needs of minority ethnic groups reflect their largely disadvantaged position in society and focus on addressing inactivity. Tailoring PA with the six principles in mind could be used as a useful framework for developing, designing and evaluating interventions for minority ethnic populations

    Scaling configurations of cosmic superstring networks and their cosmological implications

    Full text link
    We study the cosmic microwave background temperature and polarisation spectra sourced by multi-tension cosmic superstring networks. First we obtain solutions for the characteristic length scales and velocities associated with the evolution of a network of F-D strings, allowing for the formation of junctions between strings of different tensions. We find two distinct regimes describing the resulting scaling distributions for the relative densities of the different types of strings, depending on the magnitude of the fundamental string coupling g_s. In one of them, corresponding to the value of the coupling being of order unity, the network's stress-energy power spectrum is dominated by populous light F and D strings, while the other regime, at smaller values of g_s, has the spectrum dominated by rare heavy D strings. These regimes are seen in the CMB anisotropies associated with the network. We focus on the dependence of the shape of the B-mode polarisation spectrum on g_s and show that measuring the peak position of the B-mode spectrum can point to a particular value of the string coupling. Finally, we assess how this result, along with pulsar bounds on the production of gravitational waves from strings, can be used to constrain a combination of g_s and the fundamental string tension mu_F. Since CMB and pulsar bounds constrain different combinations of the string tensions and densities, they result in distinct shapes of bounding contours in the (mu_F, g_s) parameter plane, thus providing complementary constraints on the properties of cosmic superstrings.Comment: 23 pages, 8 figures, 3 tables; V2: matches published version (PRD

    Dependence of Inflationary Reconstruction upon Cosmological Parameters

    Full text link
    The inflationary potential and its derivatives determine the spectrum of scalar and tensor metric perturbations that arise from quantum fluctuations during inflation. The CBR anisotropy offers a promising means of determining the spectra of metric perturbations and thereby a means of constraining the inflationary potential. The relation between the metric perturbations and CBR anisotropy depends upon cosmological parameters -- most notably the possibility of a cosmological constant. Motivated by some observational evidence for a cosmological constant (large-scale structure, cluster-baryon fraction, measurements of the Hubble constant and age of the Universe) we derive the reconstruction equations and consistency relation to second order in the presence of a cosmological constant. We also clarify previous notation and discuss alternative schemes for reconstruction.Comment: 15 pages, LaTeX, 3 postscript figures (included with epsf), submitted to Phys. Rev.
    corecore