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Abstract 

It is demonstrated from fist principles how the existence of string like 
structures can cause a system to undergo a phase transition. In particular, 
we concentrate on the role of topologically stable cosmic string in the restora- 
tion of spontaneously broken symmetries. We discuss how the thermodynamic 
properties of strings alter when stiffness and nearest neighbour string-string 
interactions are included. 
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1 Introduction 
In this paper we present some recent calculations on string related phase transitions 
[1,2]. We begin by considering the statistical properties of the conformational phase 
transition that a single string undergoes and go on to discuss multiple-string driven 
phase transitions. The phase transition of particular interest to us is the restoration 
of a spontaneously broken gauge theory that permits topologically stable string-like 
structures. This is because the string-like structures in this case, cosmic strings, play 
a central role in one scenario for the formation of the large scale structures of the 
universe [3]. 

It has been suggested that a number of naturally occurring phase transitions can 
be understood in terms of string-like structures, the conformational phase transition 
for a single string, for example, can be used to understand the physics of some macro- 
molecules as well as the functioning of bipolymers ([4] and reference therein). Other 
phase transitions may be able to be understood in terms of a sudden proliferation in 
the number density of unbound string-like structures. Some better known examples 
are listed below:- 

(1.) 

(2.) 

The A transition in superfluid ‘He[5,6]. (The strings are vortex rings.) 

The phase transition from superconducting to normal state in bulk 
superconductors ([7] and references therein). 

( 3 4  The melting of smetic-A liquid crystals [8 ] .  (The string like structures 
in this case are lines of dislocations.) 

(4.) The deconfinement phase transition in QCD [lo]. 

By deriving the statistical properties of these systems from our string model we 
can make verifiable predictions that can be used to check its validity. 

The paper is divided into two parts. In the first we display the thermodynamic 
properties of strings that have stiffness and that interact by nearest neighbour string- 
string interactions only. Although incorporating only nearest neighbour interactions 
is perhaps naive, it has the advantage of being simple enough to enable the statistical 
mechanics of the system to be worked out in detail. We show from first principles 
the existence of a phase transition. In the second part we consider how the fact 
that cosmic strings and vortex lines are not fundamental strings, but rather collective 
excitations of an underlying theory, leads to a modification in the description of the 
phase transitions. In detail we consider Nielsen-Olesen strings [ll] and we derive 
Kibble’s prediction of the string formation temperature [12] which we find to be 
independent of the properties of the strings we might have expected to be important, 
such as stiffness. 
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2 Thermodynamics of Classical Strings. 
As already mentioned, there . r e  many phase transitions that can be understood in 
terms of the condensation of string-like structures. We shall therefore, in order to keep 
the following discussions as general as possible, define a string to have the following 

A constant intrinsic energy per unit length denoted by u. 

A constant non-zero thickness ‘a’ that is much less than the string 
length ‘L’. The simplest string-string force would be to let this thickness 
define an excluded volume that prevents two string segments having 
centre to centre separations of less than ‘a’. 

A rigidity ‘u’, that measures the energy required to bend the string. 
For example, it has been suggested that for small radius of curvature 
bending u > 0 for bosonic strings (131 while for cosmic strings u < 0 - 
O(‘$) where R is the radius of curvature of the bent string [14]. 

String-string forces. At the lowest level of approximation one might 
assume string-string forces were sufficient weak to be neglected. A more 
sophisticated approach might, for example, introduce a binding energy 
+b (-b) per unit length between two parallel strings (string-antistring) 
a distance ‘a’ apart. 

Whether the strings are closed or open is dependent on the string type, for ex- 
ample, macromolecules and QCD flux tubes are typically open whilst cosmic strings 
are closed or infinite in length. This difference is not however of major interest, as 
only the fine details of the thermodynamics depend on whether the strings are open 
or closed. 

written as: 
The above criteria.imply that the energy of a single 

E(& C) = U L  + E(C, L) 
where e (L ,C)  is the energy of the string configuration 
self interactions. If the number density of configurations 

string of length ‘L’ can be 

(1) 
C due to its stiffness and 
of energy E(L,C) is n(L,C) 

the partition function for a system of a single string in thermal equilibrium at a 
temperature T = p-’ is 

The sum is over all string configurations of differing energies. We can rewrite this 
expression as 
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is the conformational partition function. Moreover, since the sum in (3) is really an 
integral over L, C(L) is the Laplace transform of 21. 

To simplify the evaluation of the statistical properties of the strings from this 
partition function, we make two further approximations; we shall approximate the 
string to a polymer of hinged straight segments of length l=a and restrict the string 
segments to lie along the edges of a cubic lattice of lattice spacing ‘a’ ’. We shall 
relax the latter condition when it becomes too restrictive. Thus, for example, it is 
possible to calculate C(L) for a string with no stiffness (u=O) and no binding energy 
(b=O). (i.e. E ( C )  = 0). The result is (for large (L/a)) 

where V is the volume of the system, 7 = h(2d  - 1) (2d if back tracking is allowed) 
and d is the number of spatial dimensions[l]. q is a factor that depends both on 
‘d’ and the nature of the strings. For example, for a non-interacting open string 
q=-1, for a non-interacting closed string q=d/2 and for a non-self-intersecting string 
at low string densities q=7/4 in three dimensions. The factor (5)  accounts for the 
number of possible starting points for the string on the lattice, the factor e* is 
the number of possible configurations of a non-interacting string with no restriction 
being placed on whether it is open or closed and the final factor is to restrict the 
number of configurations to those appropriate to the string type under discussion. 

More generally, for nonvanishing c(C) ,C(L)  would be expected to take the form 

r) L--. 

where 7 ( p , L )  contains the c(C) dependency. All that is needed now to completely 
determine the equilibrium thermodynamics of the system is a knowledge of q and 
~ ( p ,  L). Assuming that 

we can substitute (6) into (3) to obtain: 
Lim+oo9(P, L )  = 9(P)  (7) 

where 

‘modifying this to change the length of the segments to ‘ka”where k - 0(1 )  instead of ‘a’ has 
little effect 
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reif plays the role of an effective string tension for the string. It is the vanishing of 
teff that causes the phase transition to occur. 

Let us consider a couple of examples where ~ ( p )  can be determined exactly. For 
u=b=O, 71 = Zn(2d - 1) and therefore 

T 
T,, 

(Teff = 6 ( 1  - -) 

where ea 
Zn(2d - 1) T,t = 

(Figure 1). The next simplest case to consider is that of a string which possesses a 
rigidity ‘u’ per right angle bend. ~ ( p )  is then given by 

q(p) = ZTL(I+ (12) 

where h=2d-2 [2]. A plot of ~ ( p )  versus T is shown in Figure 1. This can be general- 
ized to the case where adjacent segments make arbitrary angles, so that ‘u’ is replaced 
by the distribution u(B), with u(8)dB the energy cost in bending two segments at an 
angle 8, through an additional angle dB. Provided u(0) does not change sign the 
qualitative behaviour of ~ ( p )  is as given in Figure 1 (see [2] for full details). 

The function ~ ( p )  is important not only in determining the phase transition tem- 
perature but also in determining the mean number of folds per unit length (‘n)) of an 
open string of length L: 

T a  1 (e? - 1) 
L au a e‘, 

n = ---(log(()) = - 

This is shown qualitatively in Figure 2. As would be expected for low temperatures 
and positive rigidity (u > 0) the string has very few folds per unit length, whereas 
for low temperature and anti-rigidity (u < 0) the string has a very large number of 
folds, the number being as close to the maximum as possible. The most important 
factor in determining the most probable string configuration at low temperatures is 
the energy associated with a configuration. At higher temperature the energy is no 
longer the dominant factor in determining the string’s configuration, instead entropy 
is; the most probable configuration is the one that is most numerous. 

The system undergoes a phase transition when teff vanishes and the whole of 
space becomes Wed with string. The effect of stiffness (antistiffness) is to change the 
phase transition temperature by a fractional amount = (-*) assuming 
& << 1 which is convenient for cosmic string calculations because, although u, e and 
a are temperature dependent, 2 is independent of temperature and easily evaluated 

The effect of string-string interactions (beyond excluded volume) are more diffi- 
cult to gauge. At the moment we can only solve explicitly for particular unknotted 
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configurations like zips (eg. those that simulate the double-helix in D.N.A [15]), gen- 
eralizations of zips like those of Figure 3, or folded configurations like those of the 
Lauritzen and Zwanzig model [16]. Preliminary calculations show that the effect of 
string interactions are qualitatively akin to those of rigidity. Attractive forces in- 
crease the temperature T,, at which a,ff(T,t) = 0 whereas, repulsive forces decrease 
T,,. Figures 1 and 4 reflect this, but more work needs to be done before any firm 
conclusions can be drawn. 

So far we have just considered the conformational phase transition. The partition 
function for a system containing an arbitrary number of strings is 

2 = ezp(Z1) (14) 
if interactions between strings can be neglected [l] (Le. in the ‘free gas approxima- 
tion’). From (14) it can be shown that as T,, is approached the number density of 
strings rapidly increases. T,, defines a maximum temperature for the system (the 
Hagedorn Temperature) . As the temperature of the system approaches T,, the in- 
crease in temperature as more and more energy is ‘pumped’ into the system becomes 
smaller and smaller. Instead of causing the temperature to increase the energy goes 
into creating more and more string length. We will see in the next section that this 
maximum temperature is peculiar to non-composite strings. A system containing 
strings which are collective excitations of some underlying theory does not posses a 
Hagedorn Temperature. 

We observe that the mean number of loops is 21 [l] and that the mean number 
of loops of length L is: 

[l] For temperatures T < T,, long strings are exponentially suppressed (Figure 5), 
while for temperatures close to T,,, a,ff x 0 and 

R ( L )  a ezp( -PLaeff )L-Q- l  (15) 

R(L)  a L-q-’ (16) 

These results have been confirmed in 3D for the case of non-interacting loops 

From (14) we can evaluate the specific heat of our system. It is given by 
( q  = ;) by Vilenkin and Smith [17]. 

Using the expansion 

(where ( is Riemann’s zeta function), it can be easily shown that, for a system of 
closed strings, the specific heat diverges as T,, is approached like 

c, N (T - T,t)q-Z (19) 
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if q < 2 and is otherwise finite 3. For example, for non-interacting strings q = and 
so in this case C, is finite right up to T,, in 5 or more spatial dimensions. 

One might be worried about the use of the canonical ensemble to describe a 
system close to the phase transition temperature because there are large fluctuations 
in some thermodynamic quantities. Consider for example the mean energy density 
due to loops of strings. This is finite right up to the phase transition. The r.m.s. 
fluctuations in this quantity however diverges at the same rate as C,. The mean 
energy density in loops is therefore not a sensible quantity to discuss at temperatures 
close to T,t. Note however, that even in four or or less dimensions, not all interesting 
quantities have such large r.m.s. fluctuations about their mean values. For example, 
the r.m.s. fluctuations in the mean number of loops of size nl, (R(nl)), is proportional 
to R(nZ)lI2 which allows us to sensibly discuss R(n1) even at temperatures very close 
to T,t. The point to note is that if you wish to use the canonical ensemble to describe 
a phase transition you should check that the mean quantities you discuss do not have 
large fluctuations about their mean values. The specific heat diverging does not in 
itself signal a break down of the canonical ensemble. 

3 Thermodynamics of ‘composite’ strings 

So far we have only considered the strings as fundamental objects. To understand 
the phase transition from superconducting to normal phase, the A transition and the 
restoration of a spontaneously broken symmetry we need to take into account the fact 
that the strings are not fundamental. Here we shall only consider scalar QED, the 
simplest theory permitting cosmic strings. Analogous methods can be used for other 
theories; those readers interested in the A transition are referred to Wiegel [SI. We 
will show how strings arise during the symmetry restoring phase transition and how 
the presence of the underlying theory alters our description of the phase transition 
and in particular alters our interpretation of the Hagedorn temperature. 

Before proceeding, we should make it clear what assumptions we are making. In 
order to use the results of statistical mechanics we must assume that the strings are 
formed in thermal equilibrium. Although it is still open to debate, it would appear 
that cosmic strings could well be formed in such a state. This is because the effect of 
gravity at the scales under consideration is not strong, so the relaxation time of the 
string network is small in comparison with the expansion time of the universe. The 
second assumption we make is that the strings exist in flat space-time. (In a future 
publication we hope to relax these assumptions.) In the first instance we will also set 
u=O, b=O thereby neglecting any interactions between, or rigidity of, the strings. 

3Note this result is independent of the temperature dependence of u provided that ucff is a 
smooth function of T 
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Scalar QED is defined by the Lagrange density: 

(20) 
1 1 1 A t = - -FwFp + - I (a, + ieA& 1’ $2”; I 4 1’ -- I 4 1‘ 
4 2 4! 

where 4 is a complex scalar field, A, is the gauge field with charge ‘e’ and mi 2 0. 
The partition function for the theory can be written as 

(22) 

LE is the Euclidean form of the Lagrangian (20) (We take the signature of our Eu- 
clidean space to be -4) and the sum over configurations of 4(r , z )  and A(r,z)  is 
restricted to fields periodic in r with period P. Since the fields $(r, z) and A(r, z) 
are periodic in r they permit the Taylor expansion: 

i l w n r  ilrrr 

4 ( ~ ,  2) = $n(z)e- Ap(r,z) = c A E ( z ) e - 6  (23) 
n n 

in terms of denumerable sets of 3D fields. Substituting these expansions into LE one 
can see that the mass of the &(n # 0)) and An(n # 0) modes, (termed r$’ and A‘ ) 
are large and positive. We shall refer to ( 4 0 ,  Ao) and (V, A‘ ) as the light and heavy 
modes respectively. The partition function Z can be rewritten as 

(24) 

where 
(25) 

At high temperatures, assuming A >> e’ and working to order A one can integrate 
out the heavy modes to obtain a spatially local effective potential for the massless 
modes (for details see [l]) One obtains 

where in the covariant gauge 
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and the term $(&AS) describes our gauge fixing[l]. ThF is a constant equal to A ir+Y 
We have restricted ourselves to the regime X >> e2 to avoid some technical difficulties 
in evaluating the functional integral over the heavy modes ( these difficulties are dis- 
cussed in section 4). To evaluate (26) more fully we employ the saddle point method. 
The dominant contributions to the functional integral come from field configurations 
satisfying: 

that is, from the field configurations that satisfy the equations of motion: 

(29) 
T 2  X 

TMF 
(8; + ieA;)V = -mX(1- -+$ + 3 I 4 l a  4 

The contribution of any solution of these equations to the partition function can be 
found by substitution into (26). The solution 4 = cmstant,A = 0 is the minimum 
energy solution and therefore gives the maximum contribution. The approach in the 
early 70s to the evaluation of (26), [18], was to assume all other field configurations 
make a negligible contribution to the functional allowing the partition function to be 
written as 

ZMF = ezp(PV(-m;(T) < 4 >' -- < 4 >4)) (30) 
1 x 
2 4! 

where 
m t ( T )  = ml(1- 7) T a  and < 4 >'= - 6mt 

TMF X 

to order A, e a ,  5 and assuming T 5 TMF. From this one can see that the system 
undergoes a second order phase transition at a temperature TMF (the order parameter 
< 4 > vanishes smoothly). 

This mean field approximation is clearly very crude. It assumes that the only 
important configuration near the critical point is one of uniform density, whereas 
we know that there are large fluctuations in < 4 > and < A > near the critical 
temperature. Ideally to improve on the approximation one would like to find all the 
maxima of the functional and sum their various contributions to 2 but unfortunately 
in practice this is not really practical. Instead here we assume (ad hoc) that string- 
like field configurations make the dominant contribution to the partition function and 
that the contribution from other non-constant field configurations can be neglected. 
This assumption is not implausible when it is realised that the independent vortex 
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model of the X transition in superfluid helium includes the same assumptions (with 
no further justification) and yet gives good quantitative agreement with experiment. 

The simplest string solution to the saddle point equations is an infinite straight 
string running for example along the z-axis. This is can be expressed as [ll]: 

where 
winding around the minimum of the potential. 

Figure 6. At large distances from the string 

is a unit vector in the z-direction, and 8 is an arbitrary phase denoting the 

The solutions to the equations of motion from (28'29) are shown schematically in 

where p z ( T )  = v. At the core I 4 I vanishes. The thickness of the core is 
determined by mi', the Compton wavelength of the Higgs particle. The magnetic 
field is restricted to the core, the skin depth being determined by mi l ,  the inverse of 
the vector mass mu, 

e 
m,(T) = e p ( T )  = -m,(T) Jr; 

The string tension, or mass per unit length is: 

which is equal to 

where 'f' is a slowly varying function well known from vortex studies [19] and f(  1)=1. 
Thus we see as we approach TMF, r ( T )  falls to zero, reducing the energy per unit 
length of the string, and increasing its width N m;'(T). 

What is the contribution of the string solutions to the partition function (26)? 
Assuming we are in the regime where the strings are curved smoothly, so that any 
segment of length of order the width will also be straight, then, these strings are to 
a good approximation also solutions to (28,29), and have an energy per unit length 
approximately the same as the infinitely straight string. 2 can be written as 

2 = ezcp(Zl) (36) 
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where 

The analysis of section 2 goes through and the system undergoes a phase transition 
when 

Gff(T,t) = b(T,t) - 

(assuming u=O,b=O) i.e. when 

for some y - 0(1) and m = min(m,,m,) the inverse width of the string ( in our 
case, X >> e 2 ,  so m = m,). Since the right hand side of (35) vanishes at T = TMF, 
it follows that 

Tat TMF (40) 
The difference between T,t and TMF is small. Explicitly, 

O(e2)  (for m = mu) (41) 
I--- T.t 

T&F 

We can also calculate the width of the strings at this temperature (this will be of the 
same order as their mean separation) By substitution 

for m = mu. That is, the network of strings at the phase transition has the separation 
of the centres of flux tubes scaled up by a factor O( 1) compared to the closest packing 
of cold strings. What is the interpretation of T,,? It only makes sense to discuss string 
solutions when fluctuations that could remove them are still improbable. The free 
energy associated with such a fluctuation is, ignoring factors of unity 

where a - mean string separation. This fluctuation will have a high probability so 
long as the free energy required is substantially less than the thermal energy T. The 
two are equal when 

T - p2(T)my' (45) 
i.e. T - T,t. Above T,, it no longer makes sense to talk about strings. This suggests 
that we interpret T,, as the string formation temperature. Note, unlike the case when 
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strings are fundamental, T,, is not a limiting temperature, above T,, we are simply in 
a phase in which strings cannot exist. 

As we mentioned earlier, realistic strings posses stiffness and interactions. Pro- 
vided the stiffness ‘u’ is such that < 1 ( as is the case for small bending) the 
analysis goes as before, leaving T,, essentially unchanged. The case of interactions is 
however more complicated. The width of the string increases as we approach T,:, we 
expect the interactions of the strings to become increasingly important, because they 
will begin to overlap. This is a very difficult problem and we are currently trying 
to estimate the effect of incorporating nearest neighbour interactions, using Nambu 
strings, but with interaction energy ‘b’ per unit length [2]. In so far as is indepen- 
dent of T interactions could still not effect the estimate that (1 - &) - O(e2). 

4 Discussion 
Using the simple string model of Copeland et. al. [l] to describe phenomena such 
as, the superconducting to normal phase transition, the X transition, the melting of 
smetic-A liquid crystals and the restoration of spontaneously broken scalar QED, we 
would predict that they are all second order phase transition sharing the same critical 
exponents. However experimental results show this not to be the case, for example, 
melting is a first order phase transition whilst the X transition is observed to be second 
order. The incorrect prediction is due to the naivety of the model. By taking account 
of the varying natures of the string like structures it should be possible to produce a 
more accurate string model. Our first step has been to introduce to the model the 
possibility of strings with rigidity. We have shown that the variation in the rigidity of 
the strings like structures associated with the various phase transitions is not sufficient 
by itself to account for the experimental observations. Its most significant effect is to 
change the critical temperature by a fractional amount T,t?E’o, - ( if kL << 1). 
In [2] we will show that regardless of & the string phase transition is still second 
order and for scalar QED, (1 - +) is still of order e’ (if A >> e’). This estimate 
for T,: was originally made by Kibble [12]. 

The next step is to evaluate the effect of the varying types of string string in- 
teractions. Up to now we have only estimated the effect of very simple string-string 
interactions, such as that described in figure 3. These types of interactions do not 
change the nature of the phase transition and their effects are qualitatively very simi- 
lar to those of rigidity. We are currently working on incorporating more sophisticated 
string string interactions. 

It is important to distinguish the meaning of T,, between systems containing 
fundamental strings and those containing ‘composite’ strings. For the former it rep- 
resents a maximum temperature for the system. For the latter it does not. Instead 
it describes the maximum temperature at which it is sensible to discuss string like 

T. t 

TMP 
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field configurations. The equilibrium statistical properties of the field theory can be 
worked out at temperatures above T,: but not in terms of strings. T,, in this case 
represents the string formation temperature. 

Of particular interest to us is the restoration of a spontaneously broken gauge 
theory that permits topologically stable string like structures. Before our work the 
mean field approach had been used as the basis for models of symmetry restoring 
phase transitions. In these models the system is described by constant fields of optimal 
strength. For example, for scalar QED this approach would approximate the partition 
function (26) to its absolute maxima only. Although at low temperatures this is a 
valid approximation, we have shown that as the temperature approaches T,, this is 
no longer the case. To improve on this approximation we would ideally like to find all 
the maxima of the functional and sum their various contributions to Z. This however 
is not really practical and we have had to assume that string-like field configurations 
make the dominant contribution to the partition function and that contributions from 
other non-constant field configurations can be neglected. 

The string model pictures the restoration of symmetry as being due to overlapping 
strings filling the whole of space, that it occurs at a temperature T,, < TMF, and 
is second order. Because we have not yet fully assessed the effect of string string 
interactions in our model it is premature to rule out the possibility of the phase 
transition being first order. For scalar QED for example, it is possible to show that 
if > 1 (I < 1) the effect of fluctuations about the mean field configurations near 
TMF is to make the phase transition weakly (strongly) first order [20]. In a future 
publication we hope to address the problem of whether or not this is true of our string 
model too. 

The observational consequences of first order phase transitions in the early uni- 
verse are interesting. If the cosmic string phase transition was strongly first order 
the initial string number density could very different from that estimated by Kibble 
[E!]. This might have interesting consequences for the cosmic string and baryogenesis 
scenario of Brandenberger et al [22]. Perhaps a more interesting theory to investigate 
would be one that allows the formation of monopoles. If this phase transition was first 
order the initial monopole density might be small enough to resolve the ‘monopole 
problem’. We are currently investigating this. 

Several times during this meeting we have heard about the severe technical diffi- 
culties that exist in finite temperature gauge theories. These difficulties arise because 
the presence of the heat bath gives a preferential inertial frame. This inertial frame 
for example, leads to the temporal and spatial components of the gauge fields becom- 
ing decoupled, resulting in two possible independent masses for the gauge field. For 
a detailed discussion of the problems the reader is referred to the relevent articles in 
this volume. Of course in evaluating (26) these technical difficulties arose. It was to 
avoid these problems that we restricted ourselves to the regime A >> e’ in which the 
gauge field contributions cannot be large. Terms of order e2T2 are then constrained 

* a  a 
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by e2p2 and the vector mass is approximately unchanged, while at the same time the 
vector loop gives a small contribution to the effective scalar mass. 

What are the astrophysical consequences of the distributions of string we have 
obtained? As T,, is approached most of the string length goes into infinite strings with 
a scale invariant distribution of loops, both with approximately Brownian trajectories. 
If we had neglected string-string interactions completely we would have predicted that 
the string trajectories were exactly Brownian. This agrees with the results obtained 
by the rather different approach of Mitchell and Turok [21]. Shortly after the universe 
cooled through T,, the string network would no longer be in thermal equilibrium. Our 
results indicate that the system would like to evolve to a state with an exponentially 
suppressed distribution of large loop sizes. This makes the string domination scenario 
of Kibble and Bennett [23,24] seem unlikely but only detailed simulations of string 
dynamics in an expanding universe could rule out this scenario altogether. Recently 
Hodges has numerically analysed the distribution of global strings as they are formed 
in a second order phase transition. He has the strings in an expanding universe, 
and finds that at equilibrium, for a horizon size ten times larger than the correlation 
length, at the Ginzburg temperature, a small fraction of the string length is in infinite 
string[25]. This appears to be in contradiction with the results of [17]. However, 
Hodges allows many time steps before looking at the string distribution, Vilenkin 
immediately freezes the Higgs fields and obtains the string distribution. The difference 
lies in the time scales and length scales that are used in the problem. Overall the 
behaviour of the smallest loops as dominating the partition function below the T,, 
still appears to  hold. 

There remains a great deal to do in investigating phase transitions in the early 
universe. Can we quantify the effect of string-string interactions any more than we 
already have done? Will fluctuations around the known solutions cause the order 
of the phase transition to change? How will the distributions be affected by these 
interaction terms? What will the new string formation temperature be? For constant 
ua it appears to be little affected from the previous value (ll), which didn't have any 
interactions included[l,2]. 

Two of us, (E.C) and (R.R) would like to thank the organizers of the Thermal 
Fields Workshop, at Case Western Reserve University, for their kind hospitality. This 
work was supported in part by the DOE and NASA at Fermilab. One of us (R.R) 
would like to thank R.Kolb and the astrophysics group at Fermilab for their kind 
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Figure Captions 
7 as a function of T for strings with stiffness u and limited self-interaction 
€/unit length. The solid line corresponds to u=e=O, the dashed line to 
u > 0, E = 0, (and e < 0,u = 0), the dot-dashed line to u < O , E  = 
0, (and e > 0,u = 0). We have 7 2 70 for T >> u; EU. 

The number of folds/unit length, n, as a function of temperature for 
a stiff string. The dashed, solid, and dot-dashed lines correspond to 
u > 0, u = 0, u < 0 respectively. 

A class of (unknotted) string configurations in which string-string forces 
can be taken into account. The broken circles correspond to non- in- 
teracting loops, the double lines to interacting string segments. 

The variation of teff with T. The solid line corresponds to u = E = 0, 
the dashed line to u > 0,e = 0, or u = 0 ,e  < 0. The dot-dashed line 
corresponds to u < O , E  = 0 or u = O , E  > 0. Its intercept vanishes if 
-u = O(ca) or E = O(c) .  

The mean number of loops, R( L) as L varies for T = To (solid line) and 
T < To (dashed line). The solid line shows a scale invariant distribution, 
the dashed line exponential suppression of long loops. 

An example of the field configurations for a vortex solution at temper- 
ature T. 
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