3,700 research outputs found

    Characterization of first-order convergent sequences

    Get PDF
    AbstractFirst-order convergent sequences can be classified as showing linear, boundary linear or logarithmic convergence. Linear convergence has a well-known characterization. This paper characterizes the remaining cases. Examples illustrate the range of behavior, proving the description is optimal. A power series representation yields further conditions for first-order convergence and uniqueness results

    Effects of radiation on charge-coupled devices

    Get PDF
    The effects of 1 MeV electron irradiation upon the performance of two phase, polysilicon aluminum gate CCDs are reported. Both n- and p-surface channel and n-buried channel devices are investigated using 64- and 128-stage line arrays. Characteristics measured as a function of radiation dose include: Transfer inefficiency, threshold voltage, field effect mobility, interface state density, full well signal level and dark current. Surface channel devices are found to degrade considerably at less than 10 to the 5th power rads (Si) due to the large increase in fast interface state density caused by radiation. Buried channel devices maintain efficient operation to the highest dose levels used

    eBook mysteries to eBook management : eBook workflows at Leeds Beckett University

    Get PDF

    Long-term increase in mesozooplankton biomass in the Sargasso Sea: Linkage to climate and implications for food web dynamics and biogeochemical cycling

    Get PDF
    Changes in zooplankton biomass and species composition over long time scales can have significant effects on biogeochemical cycling and transfer of energy to higher trophic levels. We analyzed size-fractionated mesozooplankton biomass (\u3e200 mu m) from biweekly to monthly day and night tows taken from 1994 to 2010 in the epipelagic zone at the Bermuda Atlantic Time series Study (BATS) site in the oligotrophic North Atlantic subtropical gyre. During this 17-year period total mesozooplankton biomass increased 61% overall, although a few short-term downturns occurred over the course of the time series. The overall increase was higher in the nighttime compared to daytime, resulting in an increase in calculated diel vertical migrator biomass. The largest seasonal increase in total biomass was in the late-winter to spring (February-April). Associated with the larger increase in late-winter/spring biomass was a shift in the timing of annual peak biomass during the latter half of the time series (from March/April to a distinct March peak for all size fractions combined, and April to March for the 2-5 mm size fractions). Zooplankton biomass was positively correlated with sea-surface temperature, water column stratification, and primary production, and negatively correlated with mean temperature between 300 and 600 m. Significant correlations exist between multidecadal climate indices-the North Atlantic Oscillation plus three different Pacific Ocean climate indices, and BATS zooplankton biomass, indicating connections between patterns in climate forcing and ecosystem response. Resultant changes in biogeochemical cycling include an increase in the magnitude of both active carbon flux by diel vertical migration and passive carbon flux of fecal pellets as components of the export flux. The most likely mechanism driving the zooplankton biomass increase is bottom-up control by smaller phytoplankton, which has also increased in biomass and production at BATS, translating up the microbial food web into mesozooplankton. Decreases in top-down control or expansion of the range of tropical species northward as a result of warming may also play a role

    A Model for an Angular Velocity-Tuned Motion Detector Accounting for Deviations in the Corridor-Centering Response of the Bee

    Get PDF
    We present a novel neurally based model for estimating angular velocity (AV) in the bee brain, capable of quantitatively reproducing experimental observations of visual odometry and corridor-centering in free-flying honeybees, including previously unaccounted for manipulations of behaviour. The model is fitted using electrophysiological data, and tested using behavioural data. Based on our model we suggest that the AV response can be considered as an evolutionary extension to the optomotor response. The detector is tested behaviourally in silico with the corridor-centering paradigm, where bees navigate down a corridor with gratings (square wave or sinusoidal) on the walls. When combined with an existing flight control algorithm the detector reproduces the invariance of the average flight path to the spatial frequency and contrast of the gratings, including deviations from perfect centering behaviour as found in the real bee's behaviour. In addition, the summed response of the detector to a unit distance movement along the corridor is constant for a large range of grating spatial frequencies, demonstrating that the detector can be used as a visual odometer

    What do patients prefer their functional seizures to be called, and what are their experiences of diagnosis? - A mixed methods investigation

    Get PDF
    This study explored the preferred terms for functional seizures, and the experience of being diagnosed, from the patient’s perspective. 39 patients in a neuropsychiatry service diagnosed with functional seizures completed an online survey to investigate preferences for, and offensiveness of, 11 common diagnostic terms used to describe functional seizures. Of these 39 patients, 13 consented to take part in a semistructured interview exploring the experience of receiving a diagnosis. Nonepileptic attack disorder (NEAD), functional seizures, functional nonepileptic attacks (FNEA), and dissociative seizures were ranked the highest preferred terms and did not significantly differ from one another. NEAD was the least offensive term, with functional seizures and FNEA following closely. Significant overlap in confidence intervals was found between the offensiveness of all terms. Terms that indicated a psychological origin were the least preferred and viewed as most offensive. Thematic analysis identified three main themes on the experience of being diagnosed: ‘being heard and having a shared understanding’, ‘feeling alone’, and ‘sense of hope’. Patients favored diagnostic terms that facilitated and alleviated these themes on a personal basis; however, preferences differed across individuals. Our findings suggest that a range of terms have a similar level of preference and offense rating, with NEAD, functional seizures, and FNEA being the most favorable. Qualitative analysis indicates that a term and its accompanying explanation should facilitate shared acceptance and understanding, and several terms provide this. In combination with our previous study on healthy participants, we propose that one of the two terms researched are adopted by patients, health professionals, and the public: Functional nonepileptic attacks or Functional seizures

    An Inexpensive Flying Robot Design for Embodied Robotics Research

    Get PDF
    Flying insects are capable of a wide-range of flight and cognitive behaviors which are not currently understood. The replication of these capabilities is of interest to miniaturized robotics, because they share similar size, weight, and energy constraints. Currently, embodiment of insect behavior is primarily done on ground robots which utilize simplistic sensors and have different constraints to flying insects. This limits how much progress can be made on understanding how biological systems fundamentally work. To address this gap, we have developed an inexpensive robotic solution in the form of a quadcopter aptly named BeeBot. Our work shows that BeeBot can support the necessary payload to replicate the sensing capabilities which are vital to bees' flight navigation, including chemical sensing and a wide visual field-of-view. BeeBot is controlled wirelessly in order to process this sensor data off-board; for example, in neural networks. Our results demonstrate the suitability of the proposed approach for further study of the development of navigation algorithms and of embodiment of insect cognition

    Reduced Motor Neuron Excitability is an Important Contributor to Weakness in a Rat Model of Sepsis

    Get PDF
    The mechanisms by which sepsis triggers intensive care unit acquired weakness (ICUAW) remain unclear. We previously identified difficulty with motor unit recruitment in patients as a novel contributor to ICUAW. To study the mechanism underlying poor recruitment of motor units we used the rat cecal ligation and puncture model of sepsis. We identified striking dysfunction of alpha motor neurons during repetitive firing. Firing was more erratic, and often intermittent. Our data raised the possibility that reduced excitability of motor neurons was a significant contributor to weakness induced by sepsis. In this study we quantified the contribution of reduced motor neuron excitability and compared its magnitude to the contributions of myopathy, neuropathy and failure of neuromuscular transmission. We injected constant depolarizing current pulses (5 s) into the soma of alpha motor neurons in the lumbosacral spinal cord of anesthetized rats to trigger repetitive firing. In response to constant depolarization, motor neurons in untreated control rats fired at steady and continuous firing rates and generated smooth and sustained tetanic motor unit force as expected. In contrast, following induction of sepsis, motor neurons were often unable to sustain firing throughout the 5 s current injection such that force production was reduced. Even when firing, motor neurons from septic rats fired erratically and discontinuously, leading to irregular production of motor unit force. Both fast and slow type motor neurons had similar disruption of excitability. We followed rats after recovery from sepsis to determine the time course of resolution of the defect in motor neuron excitability. By one week, rats appeared to have recovered from sepsis as they had no piloerection and appeared to be in no distress. The defects in motor neuron repetitive firing were still striking at 2 weeks and, although improved, were present at one month. We infer that rats suffered from weakness due to reduced motor neuron excitability for weeks after resolution of sepsis. To assess whether additional contributions from myopathy, neuropathy and defects in neuromuscular transmission contributed to the reduction in force generation, we measured whole-muscle force production in response to electrical stimulation of the muscle nerve. We found no abnormality in force generation that would suggest the presence of myopathy, neuropathy or defective neuromuscular transmission. These data suggest disruption of repetitive firing of motor neurons is an important contributor to weakness induced by sepsis in rats and raise the possibility that reduced motor neuron excitability contributes to disability that persists after resolution of sepsis

    Psychopathic traits modulate brain responses to drug cues in incarcerated offenders

    Get PDF
    Recent neuroscientific evidence indicates that psychopathy is associated with abnormal function and structure in limbic and paralimbic areas. Psychopathy and substance use disorders are highly comorbid, but clinical experience suggests that psychopaths abuse drugs for different reasons than non-psychopaths, and that psychopaths do not typically experience withdrawal and craving upon becoming incarcerated. These neurobiological abnormalities may be related to psychopaths\u27 different motivations for-and symptoms of-drug use. This study examined the modulatory effect of psychopathic traits on the neurobiological craving response to pictorial drug stimuli. Drug-related pictures and neutral pictures were presented and rated by participants while hemodynamic activity was monitored using functional magnetic resonance imaging. These data were collected at two correctional facilities in New Mexico using the Mind Research Network mobile magnetic resonance imaging system. The sample comprised 137 incarcerated adult males and females (93 females) with histories of substance dependence. The outcome of interest was the relation between psychopathy scores (using the Hare Psychopathy Checklist-Revised) and hemodynamic activity associated with viewing drug-related pictures vs. neutral pictures. There was a negative association between psychopathy scores and hemodynamic activity for viewing drug-related cues in the anterior cingulate, posterior cingulate, hippocampus, amygdala, caudate, globus pallidus, and parts of the prefrontal cortex. Psychopathic traits modulate the neurobiological craving response and suggest that individual differences are important for understanding and treating substance abuse
    • …
    corecore