376 research outputs found

    Reduced Motor Neuron Excitability is an Important Contributor to Weakness in a Rat Model of Sepsis

    Get PDF
    The mechanisms by which sepsis triggers intensive care unit acquired weakness (ICUAW) remain unclear. We previously identified difficulty with motor unit recruitment in patients as a novel contributor to ICUAW. To study the mechanism underlying poor recruitment of motor units we used the rat cecal ligation and puncture model of sepsis. We identified striking dysfunction of alpha motor neurons during repetitive firing. Firing was more erratic, and often intermittent. Our data raised the possibility that reduced excitability of motor neurons was a significant contributor to weakness induced by sepsis. In this study we quantified the contribution of reduced motor neuron excitability and compared its magnitude to the contributions of myopathy, neuropathy and failure of neuromuscular transmission. We injected constant depolarizing current pulses (5 s) into the soma of alpha motor neurons in the lumbosacral spinal cord of anesthetized rats to trigger repetitive firing. In response to constant depolarization, motor neurons in untreated control rats fired at steady and continuous firing rates and generated smooth and sustained tetanic motor unit force as expected. In contrast, following induction of sepsis, motor neurons were often unable to sustain firing throughout the 5 s current injection such that force production was reduced. Even when firing, motor neurons from septic rats fired erratically and discontinuously, leading to irregular production of motor unit force. Both fast and slow type motor neurons had similar disruption of excitability. We followed rats after recovery from sepsis to determine the time course of resolution of the defect in motor neuron excitability. By one week, rats appeared to have recovered from sepsis as they had no piloerection and appeared to be in no distress. The defects in motor neuron repetitive firing were still striking at 2 weeks and, although improved, were present at one month. We infer that rats suffered from weakness due to reduced motor neuron excitability for weeks after resolution of sepsis. To assess whether additional contributions from myopathy, neuropathy and defects in neuromuscular transmission contributed to the reduction in force generation, we measured whole-muscle force production in response to electrical stimulation of the muscle nerve. We found no abnormality in force generation that would suggest the presence of myopathy, neuropathy or defective neuromuscular transmission. These data suggest disruption of repetitive firing of motor neurons is an important contributor to weakness induced by sepsis in rats and raise the possibility that reduced motor neuron excitability contributes to disability that persists after resolution of sepsis

    Diverse and Complex Muscle Spindle Afferent Firing Properties Emerge from Multiscale Muscle Mechanics

    Get PDF
    Despite decades of research, we lack a mechanistic framework capable of predicting how movement-related signals are transformed into the diversity of muscle spindle afferent firing patterns observed experimentally, particularly in naturalistic behaviors. Here, a biophysical model demonstrates that well-known firing characteristics of mammalian muscle spindle Ia afferents – including movement history dependence, and nonlinear scaling with muscle stretch velocity – emerge from first principles of muscle contractile mechanics. Further, mechanical interactions of the muscle spindle with muscle-tendon dynamics reveal how motor commands to the muscle (alpha drive) versus muscle spindle (gamma drive) can cause highly variable and complex activity during active muscle contraction and muscle stretch that defy simple explanation. Depending on the neuromechanical conditions, the muscle spindle model output appears to ‘encode’ aspects of muscle force, yank, length, stiffness, velocity, and/or acceleration, providing an extendable, multiscale, biophysical framework for understanding and predicting proprioceptive sensory signals in health and disease

    Comparing the DNA Hypermethylome with Gene Mutations in Human Colorectal Cancer

    Get PDF
    We have developed a transcriptome-wide approach to identify genes affected by promoter CpG island DNA hypermethylation and transcriptional silencing in colorectal cancer. By screening cell lines and validating tumor-specific hypermethylation in a panel of primary human colorectal cancer samples, we estimate that nearly 5% or more of all known genes may be promoter methylated in an individual tumor. When directly compared to gene mutations, we find larger numbers of genes hypermethylated in individual tumors, and a higher frequency of hypermethylation within individual genes harboring either genetic or epigenetic changes. Thus, to enumerate the full spectrum of alterations in the human cancer genome, and to facilitate the most efficacious grouping of tumors to identify cancer biomarkers and tailor therapeutic approaches, both genetic and epigenetic screens should be undertaken

    Enhanced tonic GABAA inhibition in typical absence epilepsy

    Get PDF
    The cellular mechanisms underlying typical absence seizures, which characterize various idiopathic generalized epilepsies, are not fully understood, but impaired GABAergic inhibition remains an attractive hypothesis. In contrast, we show here that extrasynaptic GABAA receptor–dependent ‘tonic’ inhibition is increased in thalamocortical neurons from diverse genetic and pharmacological models of absence seizures. Increased tonic inhibition is due to compromised GABA uptake by the GABA transporter GAT–1 in the genetic models tested, and GAT–1 is critical in governing seizure genesis. Extrasynaptic GABAA receptors are a requirement for seizures in two of the best characterized models of absence epilepsy, and the selective activation of thalamic extrasynaptic GABAA receptors is sufficient to elicit both electrographic and behavioural correlates of seizures in normal animals. These results identify an apparently common cellular pathology in typical absence seizures that may have epileptogenic significance, and highlight novel therapeutic targets for the treatment of absence epilepsy.peer-reviewe

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Language impairment in the genetic forms of behavioural variant frontotemporal dementia

    Get PDF
    Background: Behavioural variant fronto-temporal dementia (bvFTD) is characterised by a progressive change in personality in association with atrophy of the frontal and temporal lobes. Whilst language impairment has been described in people with bvFTD, little is currently known about the extent or type of linguistic difficulties that occur, particularly in the genetic forms. Methods: Participants with genetic bvFTD along with healthy controls were recruited from the international multicentre Genetic FTD Initiative (GENFI). Linguistic symptoms were assessed using items from the Progressive Aphasia Severity Scale (PASS). Additionally, participants undertook the Boston Naming Test (BNT), modified Camel and Cactus Test (mCCT) and a category fluency test. Participants underwent a 3T volumetric T1-weighted MRI, with language network regional brain volumes measured and compared between the genetic groups and controls. Results: 76% of the genetic bvFTD cohort had impairment in at least one language symptom: 83% C9orf72, 80% MAPT and 56% GRN mutation carriers. All three genetic groups had significantly impaired functional communication, decreased fluency, and impaired sentence comprehension. C9orf72 mutation carriers also had significantly impaired articulation and word retrieval as well as dysgraphia whilst the MAPT mutation group also had impaired word retrieval and single word comprehension. All three groups had difficulties with naming, semantic knowledge and verbal fluency. Atrophy in key left perisylvian language regions differed between the groups, with generalised involvement in the C9orf72 group and more focal temporal and insula involvement in the other groups. Correlates of language symptoms and test scores also differed between the groups. Conclusions: Language deficits exist in a substantial proportion of people with familial bvFTD across all three genetic groups. Significant atrophy is seen in the dominant perisylvian language areas and correlates with language impairments within each of the genetic groups. Improved understanding of the language phenotype in the main genetic bvFTD subtypes will be helpful in future studies, particularly in clinical trials where accurate stratification and monitoring of disease progression is required.info:eu-repo/semantics/publishedVersio

    Normal radial migration and lamination are maintained in dyslexia-susceptibility candidate gene homolog Kiaa0319 knockout mice

    Get PDF
    AbstractDevelopmental dyslexia is a common disorder with a strong genetic component, but the underlying molecular mechanisms are still unknown. Several candidate dyslexia-susceptibility genes, including KIAA0319, DYX1C1, and DCDC2, have been identified in humans. RNA interference experiments targeting these genes in rat embryos have shown impairments in neuronal migration, suggesting that defects in radial cortical migration could be involved in the disease mechanism of dyslexia. Here we present the first characterisation of a Kiaa0319 knockout mouse line. Animals lacking KIAA0319 protein do not show anatomical abnormalities in any of the layered structures of the brain. Neurogenesis and radial migration of cortical projection neurons are not altered, and the intrinsic electrophysiological properties of Kiaa0319-deficient neurons do not differ from those of wild-type neurons. Kiaa0319 overexpression in cortex delays radial migration, but does not affect final neuronal position. However, knockout animals show subtle differences suggesting possible alterations in anxiety-related behaviour and in sensorimotor gating. Our results do not reveal a migration disorder in the mouse model, adding to the body of evidence available for Dcdc2 and Dyx1c1 that, unlike in the rat in utero knockdown models, the dyslexia-susceptibility candidate mouse homolog genes do not play an evident role in neuronal migration. However, KIAA0319 protein expression seems to be restricted to the brain, not only in early developmental stages but also in adult mice, indicative of a role of this protein in brain function. The constitutive and conditional knockout lines reported here will be useful tools for further functional analyses of Kiaa0319
    • …
    corecore