158 research outputs found

    Pharmacometabolomics reveals racial differences in response to atenolol treatment.

    Get PDF
    Antihypertensive drugs are among the most commonly prescribed drugs for chronic disease worldwide. The response to antihypertensive drugs varies substantially between individuals and important factors such as race that contribute to this heterogeneity are poorly understood. In this study we use metabolomics, a global biochemical approach to investigate biochemical changes induced by the beta-adrenergic receptor blocker atenolol in Caucasians and African Americans. Plasma from individuals treated with atenolol was collected at baseline (untreated) and after a 9 week treatment period and analyzed using a GC-TOF metabolomics platform. The metabolomic signature of atenolol exposure included saturated (palmitic), monounsaturated (oleic, palmitoleic) and polyunsaturated (arachidonic, linoleic) free fatty acids, which decreased in Caucasians after treatment but were not different in African Americans (p<0.0005, q<0.03). Similarly, the ketone body 3-hydroxybutyrate was significantly decreased in Caucasians by 33% (p<0.0001, q<0.0001) but was unchanged in African Americans. The contribution of genetic variation in genes that encode lipases to the racial differences in atenolol-induced changes in fatty acids was examined. SNP rs9652472 in LIPC was found to be associated with the change in oleic acid in Caucasians (p<0.0005) but not African Americans, whereas the PLA2G4C SNP rs7250148 associated with oleic acid change in African Americans (p<0.0001) but not Caucasians. Together, these data indicate that atenolol-induced changes in the metabolome are dependent on race and genotype. This study represents a first step of a pharmacometabolomic approach to phenotype patients with hypertension and gain mechanistic insights into racial variability in changes that occur with atenolol treatment, which may influence response to the drug

    Dietary Salt Intake and Mortality in Patients With Type 2 Diabetes

    Get PDF
    OBJECTIVE: Many guidelines recommend that patients with type 2 diabetes should aim to reduce their intake of salt. However, the precise relationship between dietary salt intake and mortality in patients with type 2 diabetes has not been previously explored. RESEARCH DESIGN AND METHODS: Six hundred and thirty-eight patients attending a single diabetes clinic were followed in a prospective cohort study. Baseline sodium excretion was estimated from 24-h urinary collections (24hU(Na)). The predictors of all-cause and cardiovascular mortality were determined by Cox regression and competing risk modeling, respectively. RESULTS: The mean baseline 24hU(Na) was 184 Ā± 73 mmol/24 h, which remained consistent throughout the follow-up (intraindividual coefficient of variation [CV] 23 Ā± 11%). Over a median of 9.9 years, there were 175 deaths, 75 (43%) of which were secondary to cardiovascular events. All-cause mortality was inversely associated with 24hU(Na), after adjusting for other baseline risk factors (P < 0.001). For every 100 mmol rise in 24hU(Na), all-cause mortality was 28% lower (95% CI 6-45%, P = 0.02). After adjusting for the competing risk of noncardiovascular death and other predictors, 24hU(Na) was also significantly associated with cardiovascular mortality (sub-hazard ratio 0.65 [95% CI 0.44-0.95]; P = 0.03). CONCLUSIONS: In patients with type 2 diabetes, lower 24-h urinary sodium excretion was paradoxically associated with increased all-cause and cardiovascular mortality. Interventional studies are necessary to determine if dietary salt has a causative role in determining adverse outcomes in patients with type 2 diabetes and the appropriateness of guidelines advocating salt restriction in this setting

    Comparative Effectiveness of Guidelines for the Management of Hyperlipidemia and Hypertension for Type 2 Diabetes Patients

    Get PDF
    Background: Several guidelines to reduce cardiovascular risk in diabetes patients exist in North America, Europe, and Australia. Their ability to achieve this goal efficiently is unclear. Methods and Findings: Decision analysis was used to compare the efficiency and effectiveness of international contemporary guidelines for the management of hypertension and hyperlipidemia for patients aged 40-80 with type 2 diabetes. Measures of comparative effectiveness included the expected probability of a coronary or stroke event, incremental medication costs per event, and number-needed-to-treat (NNT) to prevent an event. All guidelines are equally effective, but they differ significantly in their medication costs. The range of NNT to prevent an event was small across guidelines (6.5-7.6 for males and 6.5-7.5 for females); a larger range of differences were observed for expected cost per event avoided (ranges, 117,269āˆ’117,269-157,186 for males and 115,999āˆ’115,999-163,775 for females). Australian and U.S. guidelines result in the highest and lowest expected costs, respectively. Conclusions: International guidelines based on the same evidence and seeking the same goal are similar in their effectiveness; however, there are large differences in expected medication costs. Ā© 2011 Shah et al

    Multi-Institutional Implementation of Clinical Decision Support for APOL1, NAT2, and YEATS4 Genotyping in Antihypertensive Management

    Get PDF
    (1) Background: Clinical decision support (CDS) is a vitally important adjunct to the implementation of pharmacogenomic-guided prescribing in clinical practice. A novel CDS was sought for the APOL1, NAT2, and YEATS4 genes to guide optimal selection of antihypertensive medications among the African American population cared for at multiple participating institutions in a clinical trial. (2) Methods: The CDS committee, made up of clinical content and CDS experts, developed a framework and contributed to the creation of the CDS using the following guiding principles: 1. medical algorithm consensus; 2. actionability; 3. context-sensitive triggers; 4. workflow integration; 5. feasibility; 6. interpretability; 7. portability; and 8. discrete reporting of lab results. (3) Results: Utilizing the principle of discrete patient laboratory and vital information, a novel CDS for APOL1, NAT2, and YEATS4 was created for use in a multi-institutional trial based on a medical algorithm consensus. The alerts are actionable and easily interpretable, clearly displaying the purpose and recommendations with pertinent laboratory results, vitals and links to ordersets with suggested antihypertensive dosages. Alerts were either triggered immediately once a provider starts to order relevant antihypertensive agents or strategically placed in workflow-appropriate general CDS sections in the electronic health record (EHR). Detailed implementation instructions were shared across institutions to achieve maximum portability. (4) Conclusions: Using sound principles, the created genetic algorithms were applied across multiple institutions. The framework outlined in this study should apply to other disease-gene and pharmacogenomic projects employing CDS

    Power to identify a genetic predictor of antihypertensive drug response using different methods to measure blood pressure response

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine whether office, home, ambulatory daytime and nighttime blood pressure (BP) responses to antihypertensive drug therapy measure the same signal and which method provides greatest power to identify genetic predictors of BP response.</p> <p>Methods</p> <p>We analyzed office, home, ambulatory daytime and nighttime BP responses in hypertensive adults randomized to atenolol (N = 242) or hydrochlorothiazide (N = 257) in the Pharmacogenomic Evaluation of Antihypertensive Responses Study. Since different measured BP responses may have different predictors, we tested the "same signal" model by using linear regression methods to determine whether known predictors of BP response depend on the method of BP measurement. We estimated signal-to-noise ratios and compared power to identify a genetic polymorphism predicting BP response measured by each method separately and by weighted averages of multiple methods.</p> <p>Results</p> <p>After adjustment for pretreatment BP level, known predictors of BP response including plasma renin activity, race, and sex were independent of the method of BP measurement. Signal-to-noise ratios were more than 2-fold greater for home and ambulatory daytime BP responses than for office and ambulatory nighttime BP responses and up to 11-fold greater for weighted averages of all four methods. Power to identify a genetic polymorphism predicting BP response was directly related to the signal-to-noise ratio and, therefore, greatest with the weighted averages.</p> <p>Conclusion</p> <p>Since different methods of measuring BP response to antihypertensive drug therapy measure the same signal, weighted averages of the BP responses measured by multiple methods minimize measurement error and optimize power to identify genetic predictors of BP response.</p

    Effects of genetic variation in H3K79 methylation regulatory genes on clinical blood pressure and blood pressure response to hydrochlorothiazide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nearly one-third of the United States adult population suffers from hypertension. Hydrochlorothiazide (HCTZ), one of the most commonly used medications to treat hypertension, has variable efficacy. The renal epithelial sodium channel (ENaC) provides a mechanism for fine-tuning sodium excretion, and is a major regulator of blood pressure homeostasis. <it>DOT1L, MLLT3, SIRT1</it>, and <it>SGK1 </it>encode genes in a pathway that controls methylation of the histone H3 globular domain at lysine 79 (H3K79), thereby modulating expression of the ENaCĪ± subunit. This study aimed to determine the role of variation in these regulatory genes on blood pressure response to HCTZ, and secondarily, untreated blood pressure.</p> <p>Methods</p> <p>We investigated associations between genetic variations in this candidate pathway and HCTZ blood pressure response in two separate hypertensive cohorts (clinicaltrials.gov NCT00246519 and NCT00005520). In a secondary, exploratory analysis, we measured associations between these same genetic variations and untreated blood pressure. Associations were measured by linear regression, with only associations with <it>P </it>ā‰¤ 0.01 in one cohort and replication by <it>P </it>ā‰¤ 0.05 in the other cohort considered significant.</p> <p>Results</p> <p>In one cohort, a polymorphism in <it>DOT1L </it>(rs2269879) was strongly associated with greater systolic (<it>P </it>= 0.0002) and diastolic (<it>P </it>= 0.0016) blood pressure response to hydrochlorothiazide in Caucasians. However, this association was not replicated in the other cohort. When untreated blood pressure levels were analyzed, we found directionally similar associations between a polymorphism in <it>MLLT3 </it>(rs12350051) and greater untreated systolic (<it>P </it>< 0.01 in both cohorts) and diastolic (<it>P </it>< 0.05 in both cohorts) blood pressure levels in both cohorts. However, when further replication was attempted in a third hypertensive cohort and in smaller, normotensive samples, significant associations were not observed.</p> <p>Conclusions</p> <p>Our data suggest polymorphisms in <it>DOT1L, MLLT3, SIRT1</it>, and <it>SGK1 </it>are not likely associated with blood pressure response to HCTZ. However, a possibility exists that rs2269879 in <it>DOT1L </it>could be associated with HCTZ response in Caucasians. Additionally, exploratory analyses suggest rs12350051 in <it>MLLT3 </it>may be associated with untreated blood pressure in African-Americans. Replication efforts are needed to verify roles for these polymorphisms in human blood pressure regulation.</p

    Multisite Investigation of Outcomes With Implementation of CYP2C19 Genotype-Guided Antiplatelet Therapy After Percutaneous Coronary Intervention

    Get PDF
    OBJECTIVES: This multicenter pragmatic investigation assessed outcomes following clinical implementation of CYP2C19 genotype-guided antiplatelet therapy after percutaneous coronary intervention (PCI). BACKGROUND: CYP2C19 loss-of-function alleles impair clopidogrel effectiveness after PCI. METHODS: After clinical genotyping, each institution recommended alternative antiplatelet therapy (prasugrel, ticagrelor) in PCI patients with a loss-of-function allele. Major adverse cardiovascular events (defined as myocardial infarction, stroke, or death) within 12 months of PCI were compared between patients with a loss-of-function allele prescribed clopidogrel versus alternative therapy. Risk was also compared between patients without a loss-of-function allele and loss-of-function allele carriers prescribed alternative therapy. Cox regression was performed, adjusting for group differences with inverse probability of treatment weights. RESULTS: Among 1,815 patients, 572 (31.5%) had a loss-of-function allele. The risk for major adverse cardiovascular events was significantly higher in patients with a loss-of-function allele prescribed clopidogrel versus alternative therapy (23.4 vs. 8.7 per 100 patient-years; adjusted hazard ratio: 2.26; 95% confidence interval: 1.18 to 4.32; p = 0.013). Similar results were observed among 1,210 patients with acute coronary syndromes at the time of PCI (adjusted hazard ratio: 2.87; 95% confidence interval: 1.35 to 6.09; p = 0.013). There was no difference in major adverse cardiovascular events between patients without a loss-of-function allele and loss-of-function allele carriers prescribed alternative therapy (adjusted hazard ratio: 1.14; 95% confidence interval: 0.69 to 1.88; p = 0.60). CONCLUSIONS: These data from real-world observations demonstrate a higher risk for cardiovascular events in patients with a CYP2C19 loss-of-function allele if clopidogrel versus alternative therapy is prescribed. A future randomized study of genotype-guided antiplatelet therapy may be of value

    Genome-Wide and Gene-Based Meta-Analyses Identify Novel Loci Influencing Blood Pressure Response to Hydrochlorothiazide

    Get PDF
    This study aimed to identify novel loci influencing the antihypertensive response to hydrochlorothiazide monotherapy. A genome-wide meta-analysis of blood pressure (BP) response to hydrochlorothiazide was performed in 1739 white hypertensives from 6 clinical trials within the International Consortium for Antihypertensive Pharmacogenomics Studies, making it the largest study to date of its kind. No signals reached genome-wide significance (P&lt;5Ɨ10āˆ’8), and the suggestive regions (P&lt;10āˆ’5) were cross-validated in 2 black cohorts treated with hydrochlorothiazide. In addition, a gene-based analysis was performed on candidate genes with previous evidence of involvement in diuretic response, in BP regulation, or in hypertension susceptibility. Using the genome-wide meta-analysis approach, with validation in blacks, we identified 2 suggestive regulatory regions linked to gap junction protein Ī±1 gene (GJA1) and forkhead box A1 gene (FOXA1), relevant for cardiovascular and kidney function. With the gene-based approach, we identified hydroxy-delta-5-steroid dehydrogenase, 3 Ī²- and steroid Ī“-isomerase 1 gene (HSD3B1) as significantly associated with BP response (P&lt;2.28Ɨ10āˆ’4). HSD3B1 encodes the 3Ī²-hydroxysteroid dehydrogenase enzyme and plays a crucial role in the biosynthesis of aldosterone and endogenous ouabain. By amassing all of the available pharmacogenomic studies of BP response to hydrochlorothiazide, and using 2 different analytic approaches, we identified 3 novel loci influencing BP response to hydrochlorothiazide. The gene-based analysis, never before applied to pharmacogenomics of antihypertensive drugs to our knowledge, provided a powerful strategy to identify a locus of interest, which was not identified in the genome-wide meta-analysis because of high allelic heterogeneity. These data pave the way for future investigations on new pathways and drug targets to enhance the current understanding of personalized antihypertensive treatment

    Use of Medicare Data to Identify Coronary Heart Disease Outcomes in the Women's Health Initiative

    Get PDF
    BACKGROUND: Data collected as part of routine clinical practice could be used to detect cardiovascular outcomes in pragmatic clinical trials or clinical registry studies. The reliability of claims data for documenting outcomes is unknown. METHODS AND RESULTS: We linked records of Women's Health Initiative (WHI) participants aged ā‰„65 years to Medicare claims data and compared hospitalizations that had diagnosis codes for acute myocardial infarction or coronary revascularization with WHI outcomes adjudicated by study physicians. We then compared the hazard ratios for active versus placebo hormone therapy based solely on WHI-adjudicated events with corresponding hazard ratios based solely on claims data for the same hormone trial participants. Agreement between WHI-adjudicated outcomes and Medicare claims was good for the diagnosis of myocardial infarction (Īŗ, 0.71-0.74) and excellent for coronary revascularization (Īŗ, 0.88-0.91). The hormone:placebo hazard ratio for clinical myocardial infarction was 1.31 (95% confidence interval, 1.03-1.67) based on WHI outcomes and 1.29 (95% confidence interval, 1.00-1.68) based on Medicare data. The hazard ratio for coronary revascularization was 1.09 (95% confidence interval, 0.88-1.35) based on WHI outcomes and 1.10 (95% confidence interval, 0.89-1.35) based on Medicare data. The differences between hazard ratios derived from WHI and Medicare data were not significant in 1000 bootstrap replications. CONCLUSIONS: Medicare claims may provide useful data on coronary heart disease outcomes among patients aged ā‰„65 years in clinical research studies. CLINICAL TRIALS REGISTRATION INFORMATION: URL: www.clinicaltrials.gov. Unique identifier: NCT00000611
    • ā€¦
    corecore