1,078 research outputs found

    Development of a 3D printer using scanning projection stereolithography

    Get PDF
    We have developed a system for the rapid fabrication of low cost 3D devices and systems in the laboratory with micro-scale features yet cm-scale objects. Our system is inspired by maskless lithography, where a digital micromirror device (DMD) is used to project patterns with resolution up to 10 ”m onto a layer of photoresist. Large area objects can be fabricated by stitching projected images over a 5cm2 area. The addition of a z-stage allows multiple layers to be stacked to create 3D objects, removing the need for any developing or etching steps but at the same time leading to true 3D devices which are robust, configurable and scalable. We demonstrate the applications of the system by printing a range of micro-scale objects as well as a fully functioning microfluidic droplet device and test its integrity by pumping dye through the channels

    Taming combinatorial explosion of the formose reaction via recursion within mineral environments

    Get PDF
    One‐pot reactions of simple precursors, such as those found in the formose reaction or formamide condensation, continuously lead to combinatorial explosions in which simple building blocks capable of function exist, but are in insufficient concentration to self‐organize, adapt, and thus generate complexity. We set out to explore the effect of recursion on such complex mixtures by ‘seeding’ the product mixture into a fresh version of the reaction, with the inclusion of different mineral environments, over a number of reaction cycles. Through untargeted UPLC‐HRMS analysis of the mixtures we found that the overall number of products detected reduces as the number of cycles increases, as a result of recursively enhanced mineral environment selectivity, thus limiting the combinatorial explosion. This discovery demonstrates how the involvement of mineral surfaces with simple reactions could lead to the emergence of some building blocks found in RNA, Ribose and Uracil, under much simpler conditions that originally thought

    Formation of oligopeptides in high yield under simple programmable conditions

    Get PDF
    Many high-yielding reactions for forming peptide bonds have been developed but these are complex, requiring activated amino-acid precursors and heterogeneous supports. Herein we demonstrate the programmable one-pot dehydration–hydration condensation of amino acids forming oligopeptide chains in around 50% yield. A digital recursive reactor system was developed to investigate this process, performing these reactions with control over parameters such as temperature, number of cycles, cycle duration, initial monomer concentration and initial pH. Glycine oligopeptides up to 20 amino acids long were formed with very high monomer-to-oligomer conversion, and the majority of these products comprised three amino acid residues or more. Having established the formation of glycine homo-oligopeptides, we then demonstrated the co-condensation of glycine with eight other amino acids (Ala, Asp, Glu, His, Lys, Pro, Thr and Val), incorporating a range of side-chain functionality

    Electrostatic theory for imaging experiments on local charges in quantum Hall systems

    Full text link
    We use a simple electrostatic treatment to model recent experiments on quantum Hall systems, in which charging of localised states by addition of integer or fractionally-charged quasiparticles is observed. Treating the localised state as a compressible quantum dot or antidot embedded in an incompressible background, we calculate the electrostatic potential in its vicinity as a function of its charge, and the chemical potential values at which its charge changes. The results offer a quantitative framework for analysis of the observations.Comment: 4 pages, 3 figure

    Development of a minimal photosystem for hydrogen production in inorganic chemical cells

    Get PDF
    Inorganic chemical cells (iCHELLs) are compartment structures consisting of polyoxometalates (POMs) and cations, offering structured and confined reaction spaces bounded by membranes. We have constructed a system capable of efficient anisotropic and hierarchical photo‐induced electron transfer across the iCHELL membrane. Mimicking photosynthesis, our system uses proton gradients between the compartment and the bulk to drive efficient conversion of light into chemical energy, producing hydrogen upon irradiation. This illustrates the power of the iCHELL approach for catalysis, where the structure, compartmentalisation and variation in possible components could be utilised to approach a wide range of reactions

    Radiocarbon Date List X: Baffin Bay, Baffin Island, Iceland, Labrador Sea, and the Northern North Atlantic

    Full text link
    Date List X contains an annotated listing of 213 radiocarbon dates determined on samples from marine and terrestrial environments. The marine samples were collected from the East Greenland, Iceland, Spitzbergen, and Norwegian margins, Baffin Bay, and Labrador Sea. The terrestrial samples were collected from Vestfirdir, Iceland and Baffin Island. The samples were submitted by INSTAAR and researchers affiliated with INSTAAR\u27s Micropaleontology Laboratory under the direction of Dr.’s John T. Andrews and Anne E. Jennings. All of the dates from marine sediment cores were determined from either shells or foraminifera (both benthic and planktic). All dates were obtained by the Accelerator Mass Spectrometry (AMS) method. Regions of concentrated marine research include: Baffin Bay, Baffin Island, Labrador Sea, East Greenland fjords, shelf and slope, Denmark Strait, the southwestern and northwestern Iceland shelves, and Vestfirdir, Iceland. The non-marine radiocarbon dates are from peat, wood, plant microfossils, and mollusc. The radiocarbon dates have been used to address a variety of research objectives such as: 1. determining the timing of northern hemisphere high latitude environmental changes including glacier advance and retreat, and 2. assessing the accuracy of a fluctuating reservoir correction. Thus, most of the dates constrain the timing, rate, and interaction of late Quaternary paleoenvironmental fluctuations in sea level, glacier extent, sediment input, and changes in ocean circulation patterns. Where significant, stratigraphic and sample contexts are presented for each core to document the basis for interpretations

    Integrated synthesis of nucleotide and nucleosides influenced by amino acids

    Get PDF
    Research on prebiotic chemistry and the origins of nucleic acids and proteins has traditionally been focussed on only one or the other. However, if nucleotides and amino acids co-existed on the early Earth, their mutual interactions and reactivity should be considered explicitly. Here we set out to investigate nucleotide/nucleoside formation by simple dehydration reactions of constituent building blocks (sugar, phosphate, and nucleobase) in the presence of different amino acids. We demonstrate the simultaneous formation of glycosidic bonds between ribose, purines, and pyrimidines under mild conditions without catalysts or activated reagents, as well as nucleobase exchange, in addition to the simultaneous formation of nucleotide and nucleoside isomers from several nucleobases. Clear differences in the distribution of glycosylation products are observed when glycine is present. This work demonstrates that reaction networks of nucleotides and amino acids should be considered when exploring the emergence of catalytic networks in the context of molecular evolution

    Renormalization in Self-Consistent Approximation schemes at Finite Temperature III: Global Symmetries

    Get PDF
    We investigate the symmetry properties for Baym's Ί\Phi-derivable schemes. We show that in general the solutions of the dynamical equations of motion, derived from approximations of the Ί\Phi-functional, do not fulfill the Ward-Takahashi identities of the symmetry of the underlying classical action, although the conservation laws for the expectation values of the corresponding Noether currents are fulfilled exactly for the approximation. Further we prove that one can define an effective action functional in terms of the self-consistent propagators which is invariant under the operation of the same symmetry group representation as the classical action. The requirements for this theorem to hold true are the same as for perturbative approximations: The symmetry has to be realized linearly on the fields and it must be free of anomalies, i.e., there should exist a symmetry conserving regularization scheme. In addition, if the theory is renormalizable in Dyson's narrow sense, it can be renormalized with counter terms which do not violate the symmetry.Comment: 32 papges, 3 figures, uses ReVTeX 4, V2: Added one more reference, V3: Corrected some typos, added two more sections about the large-N expansio

    A recursive microfluidic platform to explore the emergence of chemical evolution

    Get PDF
    We propose that a chemically agnostic approach to explore the origin of life, using an automated recursive platform based on droplet microfluidics, could be used to induce artificial chemical evolution by iterations of growth, speciation, selection, and propagation. To explore this, we set about designing an open source prototype of a fully automated evolution machine, comprising seven modules. These modules are a droplet generator, droplet transfer, passive and active size sorting, splitter, incubation chamber, reservoir, and injectors, all run together via a LabVIEW(TM) program integration system. Together we aim for the system to be used to drive cycles of droplet birth, selection, fusion, and propagation. As a proof of principle, in addition to the working individual modules, we present data showing the osmotic exchange of glycylglycine containing and pure aqueous droplets, showing that the fittest droplets exhibit higher osomolarity relative to their neighbours, and increase in size compared to their neighbours. This demonstrates the ability of our platform to explore some different physicochemical conditions, combining the efficiency and unbiased nature of automation with our ability to select droplets as functional units based on simple criteria

    Nonequilibrium evolution in scalar O(N) models with spontaneous symmetry breaking

    Full text link
    We consider the out-of-equilibrium evolution of a classical condensate field and its quantum fluctuations for a scalar O(N) model with spontaneously broken symmetry. In contrast to previous studies we do not consider the large N limit, but the case of finite N, including N=1, i.e., plain λϕ4\lambda \phi^ 4 theory. The instabilities encountered in the one-loop approximation are prevented, as in the large-N limit, by back reaction of the fluctuations on themselves, or, equivalently, by including a resummation of bubble diagrams. For this resummation and its renormalization we use formulations developed recently based on the effective action formalism of Cornwall, Jackiw and Tomboulis. The formulation of renormalized equations for finite N derived here represents a useful tool for simulations with realistic models. Here we concentrate on the phase structure of such models. We observe the transition between the spontaneously broken and the symmetric phase at low and high energy densities, respectively. This shows that the typical structures expected in thermal equilibrium are encountered in nonequilibrium dynamics even at early times, i.e., before an efficient rescattering can lead to thermalization.Comment: 31 pages, 19 Figures, LaTeX; extended discussion on the basis of: fluctuations, eff. potential, correlations, analytic calculation of parametric resonance for "pion"_and_ "sigma" field
    • 

    corecore