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Abstract
We propose that a chemically agnostic approach to explore the origin of life, using an automated recursive platform based on drop-

let microfluidics, could be used to induce artificial chemical evolution by iterations of growth, speciation, selection, and propaga-

tion. To explore this, we set about designing an open source prototype of a fully automated evolution machine, comprising seven

modules. These modules are a droplet generator, droplet transfer, passive and active size sorting, splitter, incubation chamber, reser-

voir, and injectors, all run together via a LabVIEWTM program integration system. Together we aim for the system to be used to

drive cycles of droplet birth, selection, fusion, and propagation. As a proof of principle, in addition to the working individual

modules, we present data showing the osmotic exchange of glycylglycine containing and pure aqueous droplets, showing that the

fittest droplets exhibit higher osomolarity relative to their neighbours, and increase in size compared to their neighbours. This

demonstrates the ability of our platform to explore some different physicochemical conditions, combining the efficiency and

unbiased nature of automation with our ability to select droplets as functional units based on simple criteria.

1702

Introduction
The transition from an inanimate inorganic world, principally

consisting of minerals, gases and small organic compounds, to

the living world with the first life forms remains one of the

greatest mysteries in science [1]. In the early 20th century,

Alexander Oparin and John Haldane proposed that the first

minimal living systems on Earth formed via a series of chemi-

cal steps of increasing sophistication and functionality. In

subsequent decades, knowledge of the materials and environ-

ments that would have been available on the early, prebiotic

Earth has expanded dramatically [1-5]. This has enabled the
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reduction of the potential chemical and geochemical landscape

for abiogenesis from a vast parameter space, but has also led

scientists to propose hypotheses on the origin of life under very

constrained conditions [6].

Many heated debates in the field of prebiotic chemistry have

raged over which precise historical environment(s) gave rise to

the first lifeforms. However, it is unlikely that this question can

ever be answered with reasonable certainty [7]. Therefore, the

puzzle most ripe for scientific inquiry is not how did life first

arise, but what kind of processes can facilitate the origin of life?

Identification of processes that produce complex, autocatalytic

chemical networks [8] from simple inputs via gradual, step-wise

complexification could go some way towards answering the

latter question. This approach engenders a “chemically

agnostic” perspective, in which strict adherence to the chemical

repertoire found in currently extant biochemistry is not re-

quired [9]. Indeed, the simplest biological units can be consid-

ered as nothing more than complex autocatalytic networks that

reproduce, with more or less the same stoichiometry, all func-

tionally active components of their heterogeneous chemical

mixtures. Such systems could easily exist outside the bound-

aries of known biology, and perhaps may not even require a

template-driven genetic polymer to reproduce [10].

However, irrespective of their chemistry, it is likely that any

artificial or alternative life-forms would need at least the

following attributes:

i) Compartmentalisation: a means of discretising individual

living units and enabling controlled selective exchange be-

tween these units and their external environment.

ii) Metabolism: chemical reaction networks that extract energy

from the environment in a useable form.

iii) Heritance: reliable transmission of functional information

from one generation to the next.

iv) Evolution: a means of undergoing an evolutionary selection

process, driven by errors or variations in the heritance process.

Attempts to facilitate the emergence of adaptive evolution in

artificial systems have been fraught with difficulties. A lack of

clear, tangible criteria for identifying this process when it

occurs has hindered efforts to create artificial life. The hallmark

of evolution is adaptation in response to selection pressure and

environmental change. Evolutionary biologists often track this

process using biochemical signatures such as genome sequence.

However, this would be difficult in artificial or otherwise alter-

native life, especially if there is no conventional, template-

directed genetic system. Thus, the first step is to establish a suit-

able metric for identifying and measuring their capacity for

evolution.

We propose that, for any given population of discrete living or

proto-living units, the average fitness (wi) of the population will

be evaluated as a function of time, environmental change (Δei)

and population size. Fitness will be determined and thresholded

by intensity of an observable, quantitative trait (z). Only those

units with a fitness exceeding a pre-determined threshold (f)

will be permitted to reproduce and pass on information to the

next generation. Repeating this process in an iterative manner,

allowing only the fittest members of each generation to affect

the chemical composition of subsequent generations, will lead

to adaptive evolution.

(1)

Where Cov = covariance and E = sample mean.

Equation 1 is a modified Price equation [11] with the change in

the environment Δei factored into the second term which is

nominally E(wiΔzi). Evolution in any given system will be con-

firmed via a successive change in Δz over time.

Evolvability is a pre-requisite for life, but it is not sufficient for

a system to be deemed living or life-like. Therefore, our group

is also developing a metric for evaluating the complexity of

chemical species produced in artificially evolving systems. This

complexity measurement will be thresholded using existing bio-

logical systems and by comparison with the starting inputs into

our evolutionary platform. An artificial living system would be

capable not only of evolution, but also of producing species

with a greater complexity than would be expected to arise from

any non-biological system [12]. Thus, the transition from an

evolving but non-living chemical system to an evolving living

system will be marked by production of species of comparable

complexity to those found exclusively in biology, as depicted in

Figure 1.

Droplet compartmentalisation
In our previous work, we described the assembly of a custom-

made 3D printed robotic platform that uses artificial evolution

to select for desired behaviours in chemical systems [13]. In this

case, the macroscopic behaviour of oil droplets was studied. We

used a genetic algorithm to generate a series of droplets, each

with a different set of chemical compositions, which were eval-

uated according to various fitness functions based on observ-

able traits, such as motility, vibration and division. The chemi-

cal mixtures that produced the fittest droplets in each genera-
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Figure 1: Evolution of life from non-living, complex chemistry via chemical evolution of complex chemical composites towards increasing complexity.
A transition to biological evolution occurs when composites become sufficiently complex to transition from chemical to biological units. Green arrows
indicate continuous adaptation and complexification under selection pressure; the purple arrow indicates the transition from evolving chemical com-
posites to evolving living units after exceeding a complexity threshold.

Figure 2: Schematic describing the evolutionary process. The inner circle represents the robotic process and outer circle represents the computa-
tional algorithm. A random selection of the droplet formulations are used as the starting ‘Droplet Population’. These droplets are generated in the
‘Formulation’ step. Droplet behaviours are then recorded using a camera, and then undergo image analysis against a user desired property
(e.g., colour) in the ‘Evaluation’ step. The droplets are ranked in terms of desired property (e.g., movement, division), and the least good rejected in
the ‘Ranking’ step allowing a new population to be ‘Selected’. Meanwhile the accepted formulations are used as a basis to create a new ‘Droplet
Population’ after random ‘Mutation’ and ‘Crossover’. This figure was reproduced from our earlier article [13], copyright 2014 Macmillan Publishers
Limited.

tion of experiments were allowed to influence the compositions

of the next generation, while the rest were discarded. As this

process was repeated iteratively over successive generations,

the fitness value of the population was increased (Figure 2).

Droplets provide a means of creating discrete, compartmen-

talised units, defining the “self” or units of evolution. These

defined units can then be subject to conventional selection pro-

cesses. The work described above was carried out in microlitre
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Figure 3: Recursive size-based selection and recirculation of droplets. Monodisperse droplets loaded with complex autocatalytic chemical networks
are incubated in the microfluidic device. Those droplets which facilitate the fastest production of high molecular weight polymers from simple precur-
sors exhibit an increase in osmolarity and subsequently grow in size at the expense of neighbouring droplets. Size sorting is then used to select for
droplets with a diameter (D) above a size threshold for droplets to be used in the next generation (f). Those droplets are recirculated into the next
generation, replenished with fresh feedstock, and the process is repeated in an iterative fashion.

scale droplets. However, a few recent examples in the literature

report the utilisation of pico- and nanolitre microfluidic water-

in-oil droplets and liposomes as artificial cell analogues [14,15].

Aqueous, single emulsion microdroplets can be produced at

kilohertz frequencies, and provide compartmentalisation on a

similar length scale to biological cells. Soft interface interac-

tions at liquid–liquid boundaries in microdroplets can also have

a catalytic effect via the adsorption of otherwise unstable mole-

cules [16], similar to catalysis reported at liquid–mineral inter-

faces [17].

Microfluidic platform for artificial evolution
in droplets
Here, we propose a system for facilitating chemical evolution in

populations of co-incubating aqueous, single emulsion micro-

fluidic droplets.

Each microdroplet can be considered an autonomous microreac-

tor, loaded with a self-propagating chemical reaction network.

However, it has been observed, both in our own work and in the

literature that limited exchange of material can occur between

neighbouring water-in-oil microdroplets (see Figure 3). The rate

of diffusion of molecules between microdroplets is inversely

proportional to their molecular weight, with the result that

microdroplets containing higher molecular weight species ex-

hibit greater osmotic pressure, and thus physically grow in size

at the expense of their neighbours via osmotic effects [18-20].

This is particularly the case when microdroplets contain reac-

tions that convert relatively simple, low molecular weight

starting materials into larger, more complex products. Such a

set-up is amenable to inducing competition and evolutionary

selection pressure within populations of microdroplets, using

physical droplet growth as a fitness metric. The quicker droplets

can produce larger, more complex products, the more likely

they are to grow. Size sorting can then be applied to select for

the fittest, fastest growing droplets and ensure only these

droplets are recirculated in the next iteration of reaction and

selection.

Results and Discussion
To test the ability of aqueous droplets to grow at the expense of

each other we undertook some experiments to explore osmotic

exchange between microdroplets. A mixed but monodisperse

population of 50 mM glycylglycine droplets and pure water

droplets was used as a model for this process. Due to their

greater osmotic pressure, the glycylglycine droplets grew at the

expense of the water only droplets (Figure 4 and Figure 5). This

effect was not observed for unmixed droplet populations con-

taining only glycylglycine or pure water. Using LabVIEWTM

image analysis, the osmotic exchange process can be tracked in

real time by measuring average droplet size and polydispersity

(Figure 5).

Various microdroplet size sorting techniques [21,22] can be

used to enforce a positive selection pressure for increase in

droplet size. By doing this iteratively, over multiple genera-

tions and ensuring a continuous (but not unlimited) supply of

fresh feed-stocks, it will be possible to observe the emergence
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Figure 5: Real-time, LabVIEWTM tracking of osmosis-driven coarsening of 50 mM glycylglycine and pure water droplets. Increase in droplet polydis-
persity is monitored using LabVIEWTM image analysis. s = standard deviation of droplet radius, d = mean radius.

Figure 4: Osmotic exchange and coarsening of co-incubating aqueous
microdroplets. 50 mM glycylglycine and pure H2O droplets were co-in-
cubated in the same chamber. Upper panel: mixed but monodisperse
droplet population at t = 0 min; lower panel: t = 125 min.

of adaptive evolution. Differential fitness can then be induced in

droplets when they are forced to compete for the same feed-

stocks [23]. Successive increases in the rate of droplet growth

could be indicative of evolutionary processes in response to the

continuous selection pressure. In parallel, the chemical compo-

sition of microdroplets will be analysed after each iteration.

In principle, this device should be able to carry out multiple

cycles of automated droplet generation, manipulation and selec-

tion, as shown in the process diagram in Figure 6. Passive and

active size sorting methods will be used for selection of droplets

in sub-populations and as individuals, respectively. For active

sorting, real-time image processing will be used to screen indi-

vidual droplets as they pass through a microfluidic channel. If

the droplets exceed a pre-defined size threshold for fitness, an

air-actuated polydimethylsiloxane (PDMS) valve will be acti-

vated and the droplets will be isolated and put through a new

round of growth and selection. Passive sorting techniques (such

as pinched flow fractionation) [22] have been used to sort

droplets into groups (or sub-populations). This process can also

be monitored in real-time, but this is not a requirement for the

droplet sorting and selection to proceed. Also, unlike active

sorting, passive sorting is not reliant upon automation, and is

therefore technically less complex. In both systems, droplets

below a critical size threshold for fitness are discarded.

Our aim is to design and fabricate a complete device containing

a droplet generator, an incubation chamber, a droplet size sorter,

a droplet fuser, and a droplet splitter; see Figure 7 for the device

template. Microfluidic droplet generators will produce the drop-

let populations that will then be co-incubated in different envi-
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Figure 6: Process of the automated microfluidic platform, in which recursive evolution is applied at both individual droplet and sub-population level.
Blue arrows indicate processes common to all devices; green arrows indicate processes unique to sub-population selection; red arrows indicate pro-
cesses unique to individual droplet selection.

Figure 7: The proposed device for droplet selection and evolution. The device is comprised of the following modules: a) droplet generator;
b) droplet fuser; c) droplet splitter; d) incubation chamber or delay line; e) droplet packing reservoirs; f) oil injectors; g) droplet size sorter.

ronments (e.g., pH, salt, temperature, surface chemistry, chemi-

cal inputs). Droplets that are able to grow sufficiently will be

re-circulated with fresh feedstocks for further cycles of incuba-

tion and selection, whilst droplets that get smaller will be

discarded. Thus, a continuous selection pressure for droplet

growth will be enforced in a recursive manner.

While operating such a device with many interconnected (but

independently operating) modules can be challenging, we

control timing and feedback issues using interspersed packing

reservoirs (Figure 7e) and actuated mechanical valves. The

packing reservoirs represent 3-dimensional structures that take

advantage of the tendency of aqueous droplets to float in the

surrounding fluorinated oil, and require an external outlet below

the device (to allow for excess oil drainage) connected to an

automated valve. This has been done successfully in our lab

using syringe pumps, but could be controlled through other

automated means. The addition of air pressure-actuated valves

throughout the device should also help to control the timing of

droplet movement, and experimentation will determine at which

points in the device these valves are necessary. The incubation

chamber (Figure 7d) represents a means of visualising a mono-

layer of droplets over time, which could be useful if we are

looking to monitor the droplet coarsening process over time.

However, this module could be replaced by a delay line or an

off-chip incubation receptacle if the experimental parameters

are not conducive to long-term on-chip incubation. Finally, suc-

cessful operation of the device will depend on automated move-

ment of the microscope stage to focus on the different modules,

along with collecting visual data for the purposes of tuning rates

of flow for the individual modules to carry out their functions.

Also, to test if the platform is feasible, we have made several

working versions of the modules (Figure 8) which include a
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droplet sorter. Droplet synchroniser, droplet fuser, and droplet

splitter modules are required for replenishment of micro-

droplets with fresh feedstocks. However, in the future droplet

chemistry could be adjusted so as to allow spontaneous droplet

division, thus imparting a greater degree of autonomy (and thus

“aliveness”) in the system.

Figure 8: Photographic images of individual microfluidic modules,
fabricated our laboratory in PDMS from standard soft lithography
masters: a) droplet synchroniser for b) droplet fuser; c) droplet splitter;
d) droplet sorter with air pressure-activated mechanical valve.

Conclusion
We have presented a new conceptual approach, and platform

design, to search for chemical systems within an automated

microfluidic platform that allows the creation of a population of

individuals, the application of selection pressure, selection,

combination, then splitting of the members of the population.

We have produced each of the modules individually in our labo-

ratory, but integration into a single device will be a bigger chal-

lenge. However, the exploration of osmotically driven droplet

growth has been successful and this is an important step in pro-

ducing populations of droplets with different chemical

constituents capable of guest exchange. This will be done by

recirculating droplets that meet our fitness criteria and combin-

ing them with new droplets from our variable input system. The

evolutionary capacity of droplet units will be evaluated by the

modified Price equation (Equation 1), with change in droplet

size being equivalent to Δz. In this way, we can search for

emergent physical properties of compartmentalised systems in

an unbiased and fully automated manner.

We have already designed, fabricated and tested several of the

individual modules in single-layer PDMS devices that comprise

the platform. The chemical inputs, selection pressure, and popu-

lation size will be varied as a function of cycle number. As the

fitness of the population approaches a threshold we will investi-

gate the populations for evidence of the emergence of life like

properties ‘evolved’ within the device. With this approach, we

suggest that such a platform may allow compartmentalised

chemical units to undergo a process like evolution at the chemi-

cal level.
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