2,157 research outputs found

    The signature of competition in ecomorphological traits across the avian radiation

    Get PDF
    Competition for shared resources represents a fundamental driver of biological diversity. However, the tempo and mode of phenotypic evolution in deep-time has been predominantly investigated using trait evolutionary models which assume that lineages evolve independently from each other. Consequently, the role of species interactions in driving macroevolutionary dynamics remains poorly understood. Here, we quantify the prevalence for signatures of competition between related species in the evolution of ecomorphological traits across the bird radiation. We find that mechanistic trait models accounting for the effect of species interactions on phenotypic divergence provide the best fit for the data on at least one trait axis in 27 out of 59 clades ranging between 21 and 195 species. Where it occurs, the signature of competition generally coincides with positive species diversity-dependence, driven by the accumulation of lineages with similar ecologies, and we find scarce evidence for trait-dependent or negative diversity-dependent phenotypic evolution. Overall, our results suggest that the footprint of interspecific competition is often eroded in long-term patterns of phenotypic diversification, and that other selection pressures may predominantly shape ecomorphological diversity among extant species at macroevolutionary scales

    Climate vulnerability assessment for Pacific salmon and steelhead in the California Current Large Marine Ecosystem.

    Get PDF
    Major ecological realignments are already occurring in response to climate change. To be successful, conservation strategies now need to account for geographical patterns in traits sensitive to climate change, as well as climate threats to species-level diversity. As part of an effort to provide such information, we conducted a climate vulnerability assessment that included all anadromous Pacific salmon and steelhead (Oncorhynchus spp.) population units listed under the U.S. Endangered Species Act. Using an expert-based scoring system, we ranked 20 attributes for the 28 listed units and 5 additional units. Attributes captured biological sensitivity, or the strength of linkages between each listing unit and the present climate; climate exposure, or the magnitude of projected change in local environmental conditions; and adaptive capacity, or the ability to modify phenotypes to cope with new climatic conditions. Each listing unit was then assigned one of four vulnerability categories. Units ranked most vulnerable overall were Chinook (O. tshawytscha) in the California Central Valley, coho (O. kisutch) in California and southern Oregon, sockeye (O. nerka) in the Snake River Basin, and spring-run Chinook in the interior Columbia and Willamette River Basins. We identified units with similar vulnerability profiles using a hierarchical cluster analysis. Life history characteristics, especially freshwater and estuary residence times, interplayed with gradations in exposure from south to north and from coastal to interior regions to generate landscape-level patterns within each species. Nearly all listing units faced high exposures to projected increases in stream temperature, sea surface temperature, and ocean acidification, but other aspects of exposure peaked in particular regions. Anthropogenic factors, especially migration barriers, habitat degradation, and hatchery influence, have reduced the adaptive capacity of most steelhead and salmon populations. Enhancing adaptive capacity is essential to mitigate for the increasing threat of climate change. Collectively, these results provide a framework to support recovery planning that considers climate impacts on the majority of West Coast anadromous salmonids

    On the Irrelevance of Neuromyths to Teacher Effectiveness: Comparing Neuro-Literacy Levels Amongst Award-Winning and Non-award Winning Teachers

    Get PDF
    A number of studies have recently demonstrated a high level of belief in ‘neuromyths’ (fallacious arguments about the brain) amongst trainee and non-award winning educators. The authors of these studies infer this to mean that acceptance of these neuromyths has a negative impact on teaching effectiveness. In this study, we explored this assumption by assessing the prevalence of neuromyth acceptance amongst a group of internationally recognized, award-winning teachers and comparing this to previously published data with trainee and non-award winning teacher populations. Results revealed the acceptance of neuromyths to be nearly identical between these two groups, with the only difference occurring on 2 (out of 15) items. These findings suggest that one cannot make simple, unqualified arguments concerning the relationship between belief in neuromyths and teacher effectiveness. In fact, the idea that neuromyths negatively impact upon teaching might, itself, be a neuromyth

    Ring closing reaction in diarylethene captured by femtosecond electron crystallography

    Get PDF
    The photoinduced ring-closing reaction in diarylethene, which serves as a model system for understanding reactive crossings through conical intersections, was directly observed with atomic resolution using femtosecond electron diffraction. Complementary ab initio calculations were also performed. Immediately following photoexcitation, subpicosecond structural changes associated with the formation of an open-ring excited-state intermediate were resolved. The key motion is the rotation of the thiophene rings, which significantly decreases the distance between the reactive carbon atoms prior to ring closing. Subsequently, on the few picosecond time scale, localized torsional motions of the carbon atoms lead to the formation of the closed-ring photoproduct. These direct observations of the molecular motions driving an organic chemical reaction were only made possible through the development of an ultrabright electron source to capture the atomic motions within the limited number of sampling frames and the low data acquisition rate dictated by the intrinsically poor thermal conductivity and limited photoreversibility of organic materials

    Asteroids' physical models from combined dense and sparse photometry and scaling of the YORP effect by the observed obliquity distribution

    Full text link
    The larger number of models of asteroid shapes and their rotational states derived by the lightcurve inversion give us better insight into both the nature of individual objects and the whole asteroid population. With a larger statistical sample we can study the physical properties of asteroid populations, such as main-belt asteroids or individual asteroid families, in more detail. Shape models can also be used in combination with other types of observational data (IR, adaptive optics images, stellar occultations), e.g., to determine sizes and thermal properties. We use all available photometric data of asteroids to derive their physical models by the lightcurve inversion method and compare the observed pole latitude distributions of all asteroids with known convex shape models with the simulated pole latitude distributions. We used classical dense photometric lightcurves from several sources and sparse-in-time photometry from the U.S. Naval Observatory in Flagstaff, Catalina Sky Survey, and La Palma surveys (IAU codes 689, 703, 950) in the lightcurve inversion method to determine asteroid convex models and their rotational states. We also extended a simple dynamical model for the spin evolution of asteroids used in our previous paper. We present 119 new asteroid models derived from combined dense and sparse-in-time photometry. We discuss the reliability of asteroid shape models derived only from Catalina Sky Survey data (IAU code 703) and present 20 such models. By using different values for a scaling parameter cYORP (corresponds to the magnitude of the YORP momentum) in the dynamical model for the spin evolution and by comparing synthetics and observed pole-latitude distributions, we were able to constrain the typical values of the cYORP parameter as between 0.05 and 0.6.Comment: Accepted for publication in A&A, January 15, 201

    Assessing the benefits and usefulness of Schwartz Centre Rounds in Second-Year Medical Students using Clinical Educator-Facilitated Group Work Session: not just “A Facilitated Moan”!

    Get PDF
    Background An experiential curriculum exposing medical students to the clinic early has many benefits but comes with the emotional stress this environment engenders. Schwartz rounds (SR) are an effective means to combat emotional stress and increasingly used in UK and USA hospitals. Recent studies show that the SR format may also provide benefits for medical students. This study aimed to investigate whether the guidance of SR in second year medical students provides the same benefits as to healthcare professionals. Methods SR assessment involved 83 second year MBChB students in facilitated groupwork sessions. Topics discussed were “change and resilience” and “duty of candour”. Students completed a Likert Scale questionnaire evaluating outcomes proffered by the Point of Care Foundation in collaboration with the Schwartz Foundation, with freeform feedback. Results There was an 86% completion rate with 25% providing written feedback. Participants were more likely to agree than disagree that SR were beneficial. SR effectiveness in enhancing students’ working relationship awareness and skills was strongly correlated with understanding the purpose of, and engagement with, the SR (P<0.001). Similarly, engagement with the SR was strongly correlated with self-reporting of enhanced patient-centredness (P < 0.001). Freeform feedback could be grouped into five themes that revolved around understanding of the SR and engagement with the process. Many positive comments regarded the SR as a forum not only to “learn experientially” but to so in a “safe environment”. Many negative comments stemmed from students not seeing any benefits of engagement with the SR, in that sharing experiences was “unbeneficial”, “empathy is inherent and not learnt”, or that sharing emotional problems is simply “moaning”. Conclusion SRs are an effective way of fostering empathy and understanding towards patients and colleagues. However, for the students to benefit fully from the SR it is necessary for them to engage and understand the process. Therefore, for the successful implementation of SR into pre-clinical medical education, it is important to help students realise that SR are not merely a “facilitated whinge”

    Whole home exercise intervention for depression in older care home residents (the OPERA study) : a process evaluation

    Get PDF
    Background: The ‘Older People’s Exercise intervention in Residential and nursing Accommodation’ (OPERA) cluster randomised trial evaluated the impact of training for care home staff together with twice-weekly, physiotherapist-led exercise classes on depressive symptoms in care home residents, but found no effect. We report a process evaluation exploring potential explanations for the lack of effect. Methods: The OPERA trial included over 1,000 residents in 78 care homes in the UK. We used a mixed methods approach including quantitative data collected from all homes. In eight case study homes, we carried out repeated periods of observation and interviews with residents, care staff and managers. At the end of the intervention, we held focus groups with OPERA research staff. We reported our first findings before the trial outcome was known. Results: Homes showed large variations in activity at baseline and throughout the trial. Overall attendance rate at the group exercise sessions was low (50%). We considered two issues that might explain the negative outcome: whether the intervention changed the culture of the homes, and whether the residents engaged with the intervention. We found low levels of staff training, few home champions for the intervention and a culture that prioritised protecting residents from harm over encouraging activity. The trial team delivered 3,191 exercise groups but only 36% of participants attended at least 1 group per week and depressed residents attended significantly fewer groups than those who were not depressed. Residents were very frail and therefore most groups only included seated exercises. Conclusions: The intervention did not change the culture of the homes and, in the case study homes, activity levels did not change outside the exercise groups. Residents did not engage in the exercise groups at a sufficient level, and this was particularly true for those with depressive symptoms at baseline. The physical and mental frailty of care home residents may make it impossible to deliver a sufficiently intense exercise intervention to impact on depressive symptoms

    The Changing Face of Neolithic and Bronze Age Ireland: A Big Data Approach to the Settlement and Burial Records

    Get PDF
    This paper synthesizes and analyses the spatial and temporal patterns of archaeological sites in Ireland spanning the Neolithic period and the Bronze Age transition (4300-1900 cal BC). Included are a large number of unpublished, newly discovered sites excavated through development-led projects. Data were also sourced from national archives, published excavation reports and on-line databases. Software tools were developed to deal with the varying nature and resolution of these datasets, allowing chronology to be considered in the analysis to a degree that is usually not possible in prehistoric studies. Summed radiocarbon probabilities are used to examine the dataset using context- and sample-sensitive approaches. Visualisations of spatial and chronological data illustrate the expansion of Early Neolithic settlement, followed by an apparent attenuation of all settlement activity. The Late Neolithic and Chalcolithic periods are characterised by a resurgence and diversification of activity. To assess the significance of these observations, Irish radiocarbon data are compared to an idealized model derived from North American data. Even after taking various considerations into account, human population increases can be suggested to have occurred during the Early and Late Neolithic periods. Gaps and biases in the data are discussed and priorities for future work are identified

    Two approaches to testing general relativity in the strong-field regime

    Full text link
    Observations of compact objects in the electromagnetic spectrum and the detection of gravitational waves from them can lead to quantitative tests of the theory of general relativity in the strong-field regime following two very different approaches. In the first approach, the general relativistic field equations are modified at a fundamental level and the magnitudes of the potential deviations are constrained by comparison with observations. In the second approach, the exterior spacetimes of compact objects are parametrized in a phenomenological way, the various parameters are measured observationally, and the results are finally compared against the general relativistic predictions. In this article, I discuss the current status of both approaches, focusing on the lessons learned from a large number of recent investigations.Comment: To appear in the proceedings of the conference New Developments in Gravit
    • 

    corecore