296 research outputs found

    Avian reovirus L2 genome segment sequences and predicted structure/function of the encoded RNA-dependent RNA polymerase protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The orthoreoviruses are infectious agents that possess a genome comprised of 10 double-stranded RNA segments encased in two concentric protein capsids. Like virtually all RNA viruses, an RNA-dependent RNA polymerase (RdRp) enzyme is required for viral propagation. RdRp sequences have been determined for the prototype mammalian orthoreoviruses and for several other closely-related reoviruses, including aquareoviruses, but have not yet been reported for any avian orthoreoviruses.</p> <p>Results</p> <p>We determined the L2 genome segment nucleotide sequences, which encode the RdRp proteins, of two different avian reoviruses, strains ARV138 and ARV176 in order to define conserved and variable regions within reovirus RdRp proteins and to better delineate structure/function of this important enzyme. The ARV138 L2 genome segment was 3829 base pairs long, whereas the ARV176 L2 segment was 3830 nucleotides long. Both segments were predicted to encode λB RdRp proteins 1259 amino acids in length. Alignments of these newly-determined ARV genome segments, and their corresponding proteins, were performed with all currently available homologous mammalian reovirus (MRV) and aquareovirus (AqRV) genome segment and protein sequences. There was ~55% amino acid identity between ARV λB and MRV λ3 proteins, making the RdRp protein the most highly conserved of currently known orthoreovirus proteins, and there was ~28% identity between ARV λB and homologous MRV and AqRV RdRp proteins. Predictive structure/function mapping of identical and conserved residues within the known MRV λ3 atomic structure indicated most identical amino acids and conservative substitutions were located near and within predicted catalytic domains and lining RdRp channels, whereas non-identical amino acids were generally located on the molecule's surfaces.</p> <p>Conclusion</p> <p>The ARV λB and MRV λ3 proteins showed the highest ARV:MRV identity values (~55%) amongst all currently known ARV and MRV proteins. This implies significant evolutionary constraints are placed on dsRNA RdRp molecules, particularly in regions comprising the canonical polymerase motifs and residues thought to interact directly with template and nascent mRNA. This may point the way to improved design of anti-viral agents specifically targeting this enzyme.</p

    Generation and Genetic Characterization of Avian Reovirus Temperature-Sensitive Mutants

    Get PDF
    AbstractThere currently is little known about the genetic and biological functions of avian reovirus (ARV), an atypical member of the family Reoviridae and the prototype of all nonenveloped viruses that induce syncytia formation. In this study, we created ARV temperature-sensitive (ts) mutants by chemical mutagenesis of ARV strain 138. We developed a novel efficiency of lysis (EOL) screening technique and used it and the classical efficiency of plating (EOP) assay to identify 17 ARV ts mutants. Pairwise mixed infections of these mutants and evaluation of recombinant progeny ts status led to their organization into seven recombination groups. This indicates that these new groups of mutants represent the majority of the ARV genome. To phenotypically characterize the ts mutants, progeny double-stranded RNA (dsRNA) produced at permissive and nonpermissive temperature was measured. Some mutants were capable of dsRNA synthesis at the restrictive temperature (RNA+), which indicates the effects of their ts lesions occur after RNA replication. Most mutants were RNA−, which suggests their mutations affect stages in viral replication that precede progeny genome synthesis

    Zika Virus Infection Disrupts Astrocytic Proteins Involved in Synapse Control and Axon Guidance

    Get PDF
    The first human Zika virus (ZIKV) outbreak was reported in Micronesia in 2007, followed by one in Brazil in 2015. Recent studies have reported cases in Europe, Oceania and Latin America. In 2016, ZIKV transmission was also reported in the US and the World Health Organization declared it a Public Health Emergency of International Concern. Because various neurological conditions are associated with ZIKV, such as microcephaly, Guillain-Barré syndrome, and other disorders of both the central and peripheral nervous systems, including encephalopathy, (meningo)encephalitis and myelitis, and because of the lack of reliable patient diagnosis, numerous ongoing studies seek to understand molecular mechanisms underlying ZIKV pathogenesis. Astrocytes are one of the most abundant cells in the CNS. They control axonal guidance, synaptic signaling, neurotransmitter trafficking and maintenance of neurons, and are targeted by ZIKV. In this study, we used a newly developed multiplexed aptamer-based technique (SOMAScan) to examine &gt; 1300 human astrocyte cell proteins. We identified almost 300 astrocyte proteins significantly dysregulated by ZIKV infection that span diverse functions and signaling pathways, including protein translation, synaptic control, cell migration and differentiation

    Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance

    Get PDF
    Determine if antiretroviral (ARV) regimens with good central nervous system (CNS) penetration control HIV in cerebrospinal fluid (CSF) and improve cognition

    Synaptic AMPA receptor composition in development, plasticity and disease

    Get PDF
    corecore