99 research outputs found

    Origin-of-transfer sequences facilitate mobilisation of non-conjugative antimicrobial-resistance plasmids in Staphylococcus aureus

    Get PDF
    Staphylococcus aureus is a common cause of hospital, community and livestock-associated infections and is increasingly resistant to multiple antimicrobials. A significant proportion of antimicrobial-resistance genes are plasmid-borne, but only a minority of S. aureus plasmids encode proteins required for conjugative transfer or Mob relaxase proteins required for mobilisation. The pWBG749 family of S. aureus conjugative plasmids can facilitate the horizontal transfer of diverse antimicrobial-resistance plasmids that lack Mob genes. Here we reveal that these mobilisable plasmids carry copies of the pWBG749 origin-of-transfer (oriT) sequence and that these oriT sequences facilitate mobilisation by pWBG749. Sequences resembling the pWBG749 oriT were identified on half of all sequenced S. aureus plasmids, including the most prevalent large antimicrobial-resistance/virulence-gene plasmids, pIB485, pMW2 and pUSA300HOUMR. oriT sequences formed five subfamilies with distinct inverted-repeat-2 (IR2) sequences. pWBG749-family plasmids encoding each IR2 were identified and pWBG749 mobilisation was found to be specific for plasmids carrying matching IR2 sequences. Specificity of mobilisation was conferred by a putative ribbon-helix-helix-protein gene smpO. Several plasmids carried 2–3 oriT variants and pWBG749-mediated recombination occurred between distinct oriT sites during mobilisation. These observations suggest this relaxase-in trans mechanism of mobilisation by pWBG749-family plasmids is a common mechanism of plasmid dissemination in S. aureus

    Molecular epidemiology of methicillin-resistant Staphylococcus aureus isolated from Australian veterinarians

    Get PDF
    This work investigated the molecular epidemiology and antimicrobial resistance of methicillinresistant Staphylococcus aureus (MRSA) isolated from veterinarians in Australia in 2009. The collection (n = 44) was subjected to extensive molecular typing (MLST, spa, SCCmec, dru, PFGE, virulence and antimicrobial resistance genotyping) and antimicrobial resistance phenotyping by disk diffusion. MRSA was isolated from Australian veterinarians representing various occupational emphases. The isolate collection was dominated by MRSA strains belonging to clonal complex (CC) 8 and multilocus sequence type (ST) 22. CC8 MRSA (ST8-IV [2B], spa t064; and ST612-IV [2B] , spa variable,) were strongly associated with equine practice veterinarians (OR = 17.5, 95% CI = 3.3-92.5, P < 0.001) and were often resistant to gentamicin and rifampicin. ST22-IV [2B], spa variable, were strongly associated with companion animal practice veterinarians (OR = 52.5, 95% CI = 5.2-532.7, P < 0.001) and were resistant to ciprofloxacin. A single pig practice veterinarian carried ST398-V [5C2], spa t1451. Equine practice and companion animal practice veterinarians frequently carried multiresistant-CC8 and ST22 MRSA, respectively, whereas only a single swine specialist carried MRSA ST398. The presence of these strains in veterinarians may be associated with specific antimicrobial administration practices in each animal species

    Molecular characterization of endocarditis-associated Staphylococcus aureus

    Get PDF
    Infective endocarditis (IE) is a life-threatening infection of the heart endothelium and valves. Staphylococcus aureus is a predominant cause of severe IE and is frequently associated with infections in health care settings and device-related infections. Multilocus sequence typing (MLST), spa typing, and virulence gene microarrays are frequently used to classify S. aureus clinical isolates. This study examined the utility of these typing tools to investigate S. aureus epidemiology associated with IE. Ninety-seven S. aureus isolates were collected from patients diagnosed with (i) IE, (ii) bloodstream infection related to medical devices, (iii) bloodstream infection not related to medical devices, and (iv) skin or soft-tissue infections. The MLST clonal complex (CC) for each isolate was determined and compared to the CCs of members of the S. aureus population by eBURST analysis. The spa type of all isolates was also determined. A null model was used to determine correlations of IE with CC and spa type. DNA microarray analysis was performed, and a permutational analysis of multivariate variance (PERMANOVA) and principal coordinates analysis were conducted to identify genotypic differences between IE and non-IE strains. CC12, CC20, and spa type t160 were significantly associated with IE S. aureus. A subset of virulence-associated genes and alleles, including genes encoding staphylococcal superantigen-like proteins, fibrinogen-binding protein, and a leukocidin subunit, also significantly correlated with IE isolates. MLST, spa typing, and microarray analysis are promising tools for monitoring S. aureus epidemiology associated with IE. Further research to determine a role for the S. aureus IE-associated virulence genes identified in this study is warranted

    Evolution and diversity of community-associated methicillin-resistant Staphylococcus aureus in a geographical region

    Get PDF
    Background: Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) was first reported in remote regions of Western Australia and is now the predominant MRSA isolated in the state. The objective of this study is to determine the genetic relatedness of Western Australian CA-MRSA clones within different multilocus sequence type (MLST) clonal clusters providing an insight into the frequency of S. aureus SCCmec acquisition within a region. Results: The CA-MRSA population in Western Australia is genetically diverse consisting of 83 unique pulsed-field gel electrophoresis strains from which 46 MLSTs have been characterised. Forty five of these sequence types are from 18 MLST clonal clusters and two singletons. While SCCmec IV and V are the predominant SCCmec elements, SCCmec VIII and several novel and composite SCCmec elements are present. The emergence of MRSA in diverse S. aureus clonal clusters suggests horizontal transmission of the SCCmec element has occurred on multiple occasions. Furthermore DNA microarray and spa typing suggests horizontal transfer of SCCmec elements has also occurred within the same CC. For many single and double locus variant CA-MRSA clones only a few isolates have been detected. Conclusions: Although multiple CA-MRSA clones have evolved in the Western Australian community only three clones have successfully adapted to the Western Australian community environment. These data suggest the successful evolution of a CA-MRSA clone may not only depend on the mobility of the SCCmec element but also on other genetic determinants

    Community-Acquired Pneumonia Due to Pandemic A(H1N1)2009 Influenzavirus and Methicillin Resistant Staphylococcus aureus Co-Infection

    Get PDF
    BACKGROUND: Bacterial pneumonia is a well described complication of influenza. In recent years, community-onset methicillin-resistant Staphylococcus aureus (cMRSA) infection has emerged as a contributor to morbidity and mortality in patients with influenza. Since the emergence and rapid dissemination of pandemic A(H1N1)2009 influenzavirus in April 2009, initial descriptions of the clinical features of patients hospitalized with pneumonia have contained few details of patients with bacterial co-infection. METHODOLOGY/PRINCIPAL FINDINGS: Patients with community-acquired pneumonia (CAP) caused by co-infection with pandemic A(H1N1)2009 influenzavirus and cMRSA were prospectively identified at two tertiary hospitals in one Australian city during July to September 2009, the period of intense influenza activity in our region. Detailed characterization of the cMRSA isolates was performed. 252 patients with pandemic A(H1N1)2009 influenzavirus infection were admitted at the two sites during the period of study. Three cases of CAP due to pandemic A(H1N1)2009/cMRSA co-infection were identified. The clinical features of these patients were typical of those with S. aureus co-infection or sequential infection following influenza. The 3 patients received appropriate empiric therapy for influenza, but inappropriate empiric therapy for cMRSA infection; all 3 survived. In addition, 2 fatal cases of CAP caused by pandemic A(H1N1)2009/cMRSA co-infection were identified on post-mortem examination. The cMRSA infections were caused by three different cMRSA clones, only one of which contained genes for Panton-Valentine Leukocidin (PVL). CONCLUSIONS/SIGNIFICANCE: Clinicians managing patients with pandemic A(H1N1)2009 influenzavirus infection should be alert to the possibility of co-infection or sequential infection with virulent, antimicrobial-resistant bacterial pathogens such as cMRSA. PVL toxin is not necessary for the development of cMRSA pneumonia in the setting of pandemic A( H1N1) 2009 influenzavirus co-infection

    Reversible vancomycin susceptibility within emerging ST1421 Enterococcus faecium strains is associated with rearranged vanA-gene clusters and increased vanA plasmid copy number

    Get PDF
    Vancomycin variable enterococci (VVE) are van-positive enterococci with a vancomycin-susceptible phenotype (VVE-S) that can convert to a resistant phenotype (VVE-R) and be selected for during vancomycin exposure. VVE-R outbreaks have been reported in Canada and Scandinavian countries. The aim of this study was to examine the presence of VVE in whole genome sequenced (WGS) Australian bacteremia Enterococcus faecium (Efm) isolates collected through the Australian Group on Antimicrobial resistance (AGAR) network. Eight potential VVEAus isolates, all identified as Efm ST1421, were selected based on the presence of vanA and a vancomycin-susceptible phenotype. During vancomycin selection, two potential VVE-S harboring intact vanHAX genes, but lacking the prototypic vanRS and vanZ genes, reverted to a resistant phenotype (VVEAus-R). Spontaneous VVEAus-R reversion occurred at a frequency of 4-6 × 10−8 resistant colonies per parent cell in vitro after 48 h and led to high-level vancomycin and teicoplanin resistance. The S to R reversion was associated with a 44-bp deletion in the vanHAX promoter region and an increased vanA plasmid copy number. The deletion in the vanHAX promoter region enables an alternative constitutive promoter for the expression of vanHAX. Acquisition of vancomycin resistance was associated with a low fitness cost compared with the corresponding VVEAus-S isolate. The relative proportion of VVEAus-R vs. VVEAus-S decreased over time in serial passages without vancomycin selection. Efm ST1421 is one of the predominant VanA-Efm multilocus sequence types found across most regions of Australia, and has also been associated with a major prolonged VVE outbreak in Danish hospitals

    The Dominant Australian Community-Acquired Methicillin-Resistant Staphylococcus aureus Clone ST93-IV [2B] Is Highly Virulent and Genetically Distinct

    Get PDF
    Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) USA300 has spread rapidly across North America, and CA-MRSA is also increasing in Australia. However, the dominant Australian CA-MRSA strain, ST93-IV [2B] appears distantly related to USA300 despite strikingly similar clinical and epidemiological profiles. Here, we compared the virulence of a recent Australian ST93 isolate (JKD6159) to other MRSA, including USA300, and found that JKD6159 was the most virulent in a mouse skin infection model. We fully sequenced the genome of JKD6159 and confirmed that JKD6159 is a distinct clone with 7616 single nucleotide polymorphisms (SNPs) distinguishing this strain from all other S. aureus genomes. Despite its high virulence there were surprisingly few virulence determinants. However, genes encoding α-hemolysin, Panton-Valentine leukocidin (PVL) and α-type phenol soluble modulins were present. Genome comparisons revealed 32 additional CDS in JKD6159 but none appeared to encode new virulence factors, suggesting that this clone's enhanced pathogenicity could lie within subtler genome changes, such as SNPs within regulatory genes. To investigate the role of accessory genome elements in CA-MRSA epidemiology, we next sequenced three additional Australian non-ST93 CA-MRSA strains and compared them with JKD6159, 19 completed S. aureus genomes and 59 additional S. aureus genomes for which unassembled genome sequence data was publicly available (82 genomes in total). These comparisons showed that despite its distinctive genotype, JKD6159 and other CA-MRSA clones (including USA300) share a conserved repertoire of three notable accessory elements (SSCmecIV, PVL prophage, and pMW2). This study demonstrates that the genetically distinct ST93 CA-MRSA from Australia is highly virulent. Our comparisons of geographically and genetically diverse CA-MRSA genomes suggest that apparent convergent evolution in CA-MRSA may be better explained by the rapid dissemination of a highly conserved accessory genome from a common source

    Global Scale Dissemination of ST93: A Divergent Staphylococcus aureus Epidemic Lineage That Has Recently Emerged From Remote Northern Australia.

    Get PDF
    Background: In Australia, community-associated methicillin-resistant Staphylococcus aureus (MRSA) lineage sequence type (ST) 93 has rapidly risen to dominance since being described in the early 1990s. We examined 459 ST93 genome sequences from Australia, New Zealand, Samoa, and Europe to investigate the evolutionary history of ST93, its emergence in Australia and subsequent spread overseas. Results: Comparisons with other S. aureus genomes indicate that ST93 is an early diverging and recombinant lineage, comprising of segments from the ST59/ST121 lineage and from a divergent but currently unsampled Staphylococcal population. However, within extant ST93 strains limited genetic diversity was apparent with the most recent common ancestor dated to 1977 (95% highest posterior density 1973-1981). An epidemic ST93 population arose from a methicillin-susceptible progenitor in remote Northern Australia, which has a proportionally large Indigenous population, with documented overcrowded housing and a high burden of skin infection. Methicillin-resistance was acquired three times in these regions, with a clade harboring a staphylococcal cassette chromosome mec (SCCmec) IVa expanding and spreading to Australia's east coast by 2000. We observed sporadic and non-sustained introductions of ST93-MRSA-IVa to the United Kingdom. In contrast, in New Zealand, ST93-MRSA-IVa was sustainably transmitted with clonal expansion within the Pacific Islander population, who experience similar disadvantages as Australian Indigenous populations. Conclusion: ST93 has a highly recombinant genome including portions derived from an early diverging S. aureus population. Our findings highlight the need to understand host population factors in the emergence and spread of antimicrobial resistant community pathogens
    corecore