18,012 research outputs found

    Reduced order system identification for UAVs

    Get PDF
    Reduced order models representing the dynamic behaviour of symmetric aircraft are well known and can be easily derived from the standard equations of motion. In flight testing, accurate measurements of the dependent variables which describe the linearised reduced order models for a particular flight condition are vital for successful system identification. However, not all the desired measurements such as the rate of change in vertical velocity (W. ) can be accurately measured in practice. In order to determine such variables two possible solutions exist: reconstruction or differentiation. This paper addresses the effect of both methods on the reliability of the parameter estimates. The methods are used in the estimation of the aerodynamic derivatives for the Aerosonde UAV from a recreated flight test scenario in Simulink. Subsequently, the methods are then applied and compared using real data obtained from flight tests of the Cranfield University Jetstream 31 (G-NFLA) research aircraft

    Fault tolerant control of a quadrotor using L-1 adaptive control

    Get PDF
    Purpose – The growing use of small unmanned rotorcraft in civilian applications means that safe operation is increasingly important. The purpose of this paper is to investigate the fault tolerant properties to faults in the actuators of an L1 adaptive controller for a quadrotor vehicle. Design/methodology/approach – L1 adaptive control provides fast adaptation along with decoupling between adaptation and robustness. This makes the approach a suitable candidate for fault tolerant control of quadrotor and other multirotor vehicles. In the paper, the design of an L1 adaptive controller is presented. The controller is compared to a fixed-gain LQR controller. Findings – The L1 adaptive controller is shown to have improved performance when subject to actuator faults, and a higher range of actuator fault tolerance. Research limitations/implications – The control scheme is tested in simulation of a simple model that ignores aerodynamic and gyroscopic effects. Hence for further work, testing with a more complete model is recommended followed by implementation on an actual platform and flight test. The effect of sensor noise should also be considered along with investigation into the influence of wind disturbances and tolerance to sensor failures. Furthermore, quadrotors cannot tolerate total failure of a rotor without loss of control of one of the degrees of freedom, this aspect requires further investigation. Practical implications – Applying the L1 adaptive controller to a hexrotor or octorotor would increase the reliability of such vehicles without recourse to methods that require fault detection schemes and control reallocation as well as providing tolerance to a total loss of a rotor. Social implications – In order for quadrotors and other similar unmanned air vehicles to undertake many proposed roles, a high level of safety is required. Hence the controllers should be fault tolerant. Originality/value – Fault tolerance to partial actuator/effector faults is demonstrated using an L1 adaptive controller

    The reliability and validity of a field hockey skill test

    Get PDF
    High test retest reliability is essential in tests used for both scientific research and to monitor athletic performance. Thirty-nine (20 male and 19 female) well-trained university field hockey players volunteered to participate in the study. The reliability of the in house designed test was determined by repeating the test (3-14 days later) following full familiarisation. The validity was assessed by comparing coaches ranks of players with ranked performance on the skill test. The mean difference and confidence limits in overall skill test performance was 0.0 ± 1.0% and the standard error (confidence limits) was 2.1% (1.7 to 2.8%). The mean difference and confidence limits for the ‘decision making’ time was 0.0 ± 1.0% and the standard error (confidence limits) was 4.5% (3.6 to 6.2%). The validity correlation (Pearson) was r = 0.83 and r= 0.73 for female players and r = 0.61 and r = 0.70 for male players for overall time and ‘decision making’ time respectively. We conclude that the field hockey skill test is a reliable measure of skill performance and that it is valid as a predictor of coach assessed hockey performance, but the validity is greater for female players

    Older Workers and On-the-Job Training in Canada: Evidence from the WES Data

    Get PDF
    This paper provides evidence of on-the-job training among older workers in Canada. It also examines the effect of age associated with on-the-job training. Statistics Canada’s Workplace and Employee Survey (WES) 2001 data, linking employee responses to workplace (i.e. employer) responses are used. Three quarters of workers are categorized as middle aged, with about one in ten being younger and one in five considered to be older. Only 32% of Canadian workers received on-the-job training in the year preceding this survey. When separating workers into the three age categories, 37%, 34%, and 24% of younger, middle-aged, and older workers, respectively, received on-the-job training in that year. Logistic regression analysis results showed that, controlling for workplace, job and individual factors, as compared to middle-aged workers, older workers are significantly less likely to receive on-the-job training. The lack of on-the-job training for older workers should be a concern for policy makers at a time when labour shortages are being predicted. Older workers are healthier than ever and the provision of on-the-job training should be encouraged to retain older workers in the labour market in Canada.older workers, on-the-job training, Workplace and Employment Survey

    Finite element computation of a viscous compressible free shear flow governed by the time dependent Navier-Stokes equations

    Get PDF
    A finite element algorithm for solution of fluid flow problems characterized by the two-dimensional compressible Navier-Stokes equations was developed. The program is intended for viscous compressible high speed flow; hence, primitive variables are utilized. The physical solution was approximated by trial functions which at a fixed time are piecewise cubic on triangular elements. The Galerkin technique was employed to determine the finite-element model equations. A leapfrog time integration is used for marching asymptotically from initial to steady state, with iterated integrals evaluated by numerical quadratures. The nonsymmetric linear systems of equations governing time transition from step-to-step are solved using a rather economical block iterative triangular decomposition scheme. The concept was applied to the numerical computation of a free shear flow. Numerical results of the finite-element method are in excellent agreement with those obtained from a finite difference solution of the same problem

    Bone cross-sectional geometry in male runners, gymnasts, swimmers and non-athletic controls: a hip-structural analysis study.

    Get PDF
    Loading of the skeleton is important for the development of a functionally and mechanically appropriate bone structure, and can be achieved through impact exercise. Proximal femur cross-sectional geometry was assessed in the male athletes (n = 55) representing gymnastics, endurance running and swimming, and non-athletic controls (n = 22). Dual energy X-ray absorptiometry (iDXA, GE Healthcare, UK) measurements of the total body (for body composition) and the left proximal femur were obtained. Advanced hip structural analysis (AHA) was utilised to determine the areal bone mineral density (aBMD), hip axis length (HAL), cross-sectional area (CSA), cross-sectional moment of inertia (CSMI) and the femoral strength index (FSI). Gymnasts and runners had greater age, height and weight adjusted aBMD than in swimmers and controls (p < 0.05). Gymnasts and runners had greater resistance to axial loads (CSA) and the runners had increased resistance against bending forces (CSMI) compared to swimmers and controls (p < 0.01). Controls had a lower FSI compared to gymnasts and runners (1.4 vs. 1.8 and 2.1, respectively, p < 0.005). Lean mass correlated with aBMD, CSA and FSI (r = 0.365-0.457, p < 0.01), particularly in controls (r = 0.657-0.759, p < 0.005). Skeletal loading through the gymnastics and running appears to confer a superior bone geometrical advantage in the young adult men. The importance of lean body mass appears to be of particular significance for non-athletes. Further characterisation of the bone structural advantages associated with different sports would be of value to inform the strategies directed at maximising bone strength and thus, preventing fracture

    Composting paper and grass clippings with anaerobically treated palm oil mill effluent

    Get PDF
    Purpose The purpose of this study is to investigate the composting performance of anaerobically treated palm oil mill effluent (AnPOME) mixed with paper and grass clippings. Methods Composting was conducted using a laboratory scale system for 40 days. Several parameters were determined: temperature, mass reduction, pH, electrical conductivity, colour, zeta potential, phytotoxicity and final compost nutrients. Results The moisture content and compost mass were reduced by 24 and 18 %, respectively. Both final compost pH value and electrical conductivity were found to increase in value. Colour (measured as PtCo) was not suitable as a maturity indicator. The negative zeta potential values decreased from −12.25 to −21.80 mV. The phytotoxicity of the compost mixture was found to decrease in value during the process and the final nutrient value of the compost indicates its suitability as a soil conditioner. Conclusions From this study, we conclude that the addition of paper and grass clippings can be a potential substrate to be composted with anaerobically treated palm oil mill effluent (AnPOME). The final compost produced is suitable for soil conditioner

    Spin-one ferromagnets with single-ion anisotropy in a perpendicular external field

    Full text link
    In this paper, the conventional Holstein-Primakoff method is generalized with the help of the characteristic angle transformation [Lei Zhou and Ruibao Tao, J. Phys. A {\bf 27} 5599 (1994)] for the spin-one magnetic systems with single-ion anisotropies. We find that the weakness of the conventional method for such systems can be overcome by the new approach. Two models will be discussed to illuminate the main idea, which are the ``easy-plane" and the ``easy-axis" spin-one ferromagnet, respectively. Comparisons show that the current approach can give reasonable ground state properties for the magnetic system with ``easy-plane" anisotropy though the conventional method never can, and can give a better representation than the conventional one for the magnetic system with ``easy-axis" anisotropy though the latter is usually believed to be a good approximation in such case. Study of the easy-plane model shows that there is a phase transition induced by the external field, and the low-temperature specific heat may have a peak as the field reaches the critical value.Comment: Using LaTex. To be published in the September 1 issue of Physical Review B (1996). Email address: [email protected]
    • …
    corecore