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FINITE ELEMENT COMPUTATION OF A VISCOUS COMPRESSIBLE
FREE SHEAR FLOW GOVERNED BY THE TIME
DEPENDENT NAVIER~STOKES EQUATIONS

By

Charlie H. Cookel! and Doris K. Blanchard?
SUMMARY

A finite element algorithm”for solution of fluid flow
problems characterized by the two-dimensional compressible
_Navier-StOkes equations has been-developed. The program is
intended for viscous compressible high speed £lows; hence,

_ prlmltlve varlables are utilized. The physical solution is
approximated by trial functions which at a fixed tlme are plece?
wise cubic on triangular elements. The Galerkin technigue is
employed to determine the finite-element model equations. A -
leapfrog time integration is used for marchlng asymptotlcally
from 1n1t1al to steady state, w1th iterated 1ntegrals evaluated
by numerlcal quadratures. The nonsymmetric linear systems of
equations governing time transition from step-to-step are

- solved using a rather economical block iterative triangular
decomposltlon scheme. | o '

_ Proof ot concept has been accompllshed by the numerlcal
computatlon-of a free shear flow. Numerical results of the
finite-element method are in excellent agreement with those
obtained from a finite difference solution of the same test -
problem, '

1 . Associate Professor of Mathematical and Computing:. Scmences, Old
Dominion Unlver51ty, Norfolk, VA~ 23508,

ngh-Speed Aerodynamlcs DlVlSlon, NASA Langley Research
Center, Hampton; Virginia 23665, _ _ :



INTRODUCTION

Over the past‘two decades the finite element method has
become a widely accepted tool for obtaining reliable numerical
solutions to problems in structural mechanics. However, in
fluids calculations the method can at best be regarded as rela-~
tively untested, although its appllcatlon is steadily diversi-
fying. Recent endeavors include analy51s ‘of flow problems
involving free surfaces, such as occur ih groundwater seepage
and oil depletion problems in the petroleum industry, which
involve the nonlinear gas flow equations (ref. 1); wind driven
lake circulation problems including islands (ref. 2); limited

-regiun-modeling of mesoscale phenomena associated with the
dynamics of ocean circulation (ref. 3); calculation of flows

over nonlifting circular airfoils, based on the small disturbance’
nonlinear transonic flow equations of an inviscid compressible
fluid (ref. 4); laminar three-dimensional boundary layer f£low of

a multicomponent compressible fiuid (ref. 5); and pressure dige-
tributions for confined flow problems (ref. 6). |

- For the most part these investigations have considered low
Reynolds number low speed flows. Sparseness in problem dimension
and number of dependent varlables (in effect, no more than two
space ‘dimensions and/or two dependent variables) has been a smmpll—
fying characteristic. The governlng.equatlons permitted symmetric
_ equatlon solvers when the problems were 1mp11c1t._ The present
-1nvestlgat10n, to the best of the authors' knowledge, is one of
the first attempts to solve by finite elements a fluid dynamlcs
problem characterized simultaneously by a variety of cumbersome
aspects'tending to severely complicate the numerical formulation.

_ The flow is governed by the tlmewdependent nonllnear nonwself _
"ad301nt compr6551ble Nalver—Stokes equatlons, in two space dimen-
sions and three dependent variables. (The mitigating assumption

L of_eonstent'total temperature, i;e.,'adiabatic'jet'miXing,fpere[

mits the energy equationrto be replaced by an'algebraic eqqetien.)



A sophisticated higher order element, cubic B-splines on triangles,
is employed. The nature of the problem forces area integrals'
arising from the Galerkin formulation to be evaluated by numerical
guadratures. The resulting systems of finite element equations
are nonsymmetric, and the problem size dictated development of a
linear system solver specially adapted to the characteristics

of the problem, B ' | o |

The goal of the present investigation is two-fold; first, the
development of a reliable numerical tool for computing laminar
flows which can be extended for use in testing £fully two-dimen-
sional turbulence models for a wide range of free shear flow
applications, such as interference heating, separated flows, jet
exhaust noise reduction, combustor design, and tangential slot
injection; Second, an assessment of the feasibility of using-
the finite element method as a tool for fluid mechanic calcula-
tions is an expected product of the research. The same problem
has been solved by various finite dlfference schemes, and compu-—
tational results are readily available (ref. 7) for comparison,

In termsIQf cdmputer'eore size requirements, -as well as
efficiency per computational'step, the explicit finite difference
methods afford the most economical approach to solving the time-
dependent viscous compressible Navier-Stokes equations. However,
for numerieal stability very small time steps relative to spatial
grid size are reguired. This mandates long computation time to
reach steady-state, especially for flows characterized by fine
fnesh spacing in regions of large gradients.' As a result, the
uncondltlonally stable 1mp11c1t alternating-direction methods
“{ADIL), Hopscotch ADE methods, and MacCormack's method (ref. 8)-
have been found currently the most popular alternatives., Although -

- the practical advantage of ADI methods over expllclt methods is

nowhere near that predlcted by ths Von Neuman analy51s, experlence
indicates large time steps are allowed, although somewhat less
than an order of magniﬁudé.larger.than.the'explicitdCEL 1limit.



The features of the finite element method which appear to
‘enhance its attractiveness for fluid dynamics applications,

" ‘and which are distinct advantages over other numerical schemes,

include:

1, Complex boundaries and boundary conditions can he easily
and effectively treated. For example, by using higher ordexr
elements whlch carry function and derlvatlve values as unknowns,
both function and derivative boundary condltlons can he treated
homogeneously, without extra boundary error generated by writing
- finite difference derivative approximations. = Also, triangular
elements allow more precise treatment of complex geometry, and

even further prEClSlon is obtalned through 1soParametrlc elements.

2. Mesh reflnement in reglons of large gradlents is ea31ly'
1mplemented.

3. The approx1mat10ns for a partlcular problem are more
flexible.  These are reflected in freedom of choice over element

shape, size, and order of approximation in each element.

4. Time steps at least as large as allowed by ADI are
permitted..

~ In general, it can be said that the approach affords a
fallly automatic scheme which does not leave much flexlblllty
for manlpulatlon of the mechanlcs of the algorlthm, i.e., the
kind of differencing for individual terms is not readily extern-
- ally visible. '

On the other hand, it is clear that the advantages of the
method, flelellltY and reliability, come w1th a prlce attached.

 For example, the complex1ty of 1mplementat10n of the method

entails much more sophistication of computer code, longer

development t:mer more manhour and machine hour gxpense, etc.
Aside fror development of the fundamental numerlcal aLgorluhm
myrlad data manlpulatlon and supportlng software programs need



be produced for effective use of the method. Moreover, the
execution time per computational step is relatively expensive.

FLUID DYNAMICS MODEL OF A
' FREE SHEAR FLOW '

A fluid dynamics problem whose description requires the
complete Navier-Stokes equations is free mixing flow with no.
dominant flow direction. Such a problem occurs in the mixing
of a supersonic jet wiﬁh an imposed crossflow. This prob-
lem would embody some of the complications often unavoidable in
practical calculation of flows for real vehicles, such as sharp
COorners, trﬁncaﬁed cbmputatidnal domain, compuﬁational bouﬁdary
conditions at artificial downstream boundaries, and boundary |
conditions for mixed parabolic-hyperbolic flow, Such a problem
has been attempted by finite difference methods (ref. 7). and
it is intended to apply the finite element program for future
comparisons of the solutions to thls problem.

However, since the individual effects of such complications
are hard to iselate, the’pibneer applicetibn of the finite element
program developed under NASA contract NAS1I-11707-37 is to the com-
putation of a free shear flow generated by the parallel mixing
of two supersonic.jeﬁs,,ihitially separated by a thin.splitter
plate. Solution of such a problem does not in this case require
'the Full NaV1er~Stokes equatlons, since fairly accurate results SRR
can be obtained using the quaSLHParallel assumptions of parabolic
: boundary layex theory (ref. 9). However; the avallablllty of soluﬂ”_
,tlons generated by several compdtatlonal methods affords a ready -
. basms for evaluation of the finite element method. -

Flow Field COnfiguratibn
The flow fleld conflguratlon oL the problem con51dered 15_.
.shown in flgure 1. The computatlonal domain beglns downstream



from the base of the splitter plates. For the ftest case presented
. in the present paper the_jet Mach numbers are 3 and 1.68 for
Re = 1000. | | -

Governing Equations

Steady-state flow is asymptoﬁically approached through solu~
tion of the time-dependent Navier-Stokes equations. The assump-
tion of constant total temperature (adiabatic mixing) and bwoe
dimensional flow yields the following non-dimensional systems
"of governing eguations: o

"Continuigz:
%%+p(23+§2 +VE-E-+1.1-§—Q=0 (1)

av oV vy - 3 4 3 oV
p at+vay+u§§) %§+3RS”':E*'(“§‘§
. T ) - (2)
,._§_(.__.2u Ju 8 __te_(_?_g+.§x 0
9y \3R_ ox ox RS v ox
'XAmomentum:
au o Bu |  3u. SP ".4.  a“ .'Lﬁﬁ
P at*”"ay*u"a":z)‘“;*""“msa—x' ) S
e _ ST I €D B
S (L a Ler.w] oL,
T ox (33 5?) ay[”3x+8.1f] =0
Temperature relations



Constitutive relationships:

‘ o - .3/2_ Ts-+.198..6
I‘ » . - - 4
Sutherland's viscosity law: 1 T T T F 10B.6 {5)

Perfect gas law: P = p (Y ) T . | (6)

In equation (5), u,T are dimensionless, although T and the
constant 198 6 (Sutherland's constant) are expressed 1n degxees
"Ranklne. The variables used to non-dimensionalize egs. (1) to (6)

are presented in reference 7.

Th:oughout this paper, the notation: fx .and'wfy denote
guantities associated with the x,y directions; the convention
for first”partial derivatives will be

af of _ | L |
X f,x _ or Wy f,y A . | :(7)

Boundary Conditions

Boundary conditions for the problem are shown schematically
in figure 2. Function speclfloatlons are glven for all three
variables on the 1nflow, symmetry conditions apply at the bottom,
and on the top function specification is made for velocity, zero

- normal derivative for density. On the outflow a computational
boundary'condition is applied; this could be either linear ox
quad?atlc extrapolatlon. The downstream boundary condltlon _ N

'Fcomputatlons will be dlscussed in detail in a subsequent section

" of the present paper.—
FINITE ELEMENT APPROXIMATTON
" our approx1matlon £o the fluid dynamics problem quuatlons

(1) to (7) and boundary oondltlons of figure 2] is obtained by
oapplylng the class;oal.Gale;k;n_(or;method.of weighted residuals) -



in conjunction with finite elements, The first step is to tri~
angulate the computatlonal domain € with boundary T, and

then consider plecew1se polynomial approximating (trial) functions
on this grid.

Trial Punctions

For purposes of 1llustrat10n, the trial functions for approx1~
mating density variations are of the form

-

N

pyt) =% i(8) o eyl . (8)
i=1 |

Here N is the total number of nodes. ‘The (B-spline) functions
{¢J} comprise a local and interpolating basis for functions of '
the form eguation (8), which are continuous and piecewise cubic
polynomial on £, with sectionally continuous first partial
‘derivatives, which are infinitely differentiable cubic on _
the interior of each triangle. (For a meore precise description
of the B-splines, see reference 10).

The weights p (t) are chosen by Galerkin's methods. Thus,
the final approxlmatlng function satisfies all boundary and lnltlal
condltlons at problem nodes, and approxlmately ‘satisfies the
governing -equations over the domain. For each trial function
(density and two velocity components) there are ten nodes per
triangle; triple nodes at triangle vertices, and a-single ﬁode

at the centrOld (see flg. 3). The parameters each associate

p
o , J |
with a dlStlnCt node, and represent approximations to function -
and first partial derivative values (p, p < P Y) at vertices,

‘ . , : hanel -
and function values alone at the centroid..

Time Discretization

For 51mp1101ty, the tlme dlscretlzaﬁlon Wlll be 1nd1cated
only for the pseudo-v1scous contlnulty equatlon
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+V»pU=¢V2p , (9)

(e}
o

where U is the velocity vector. (For € non-zero but small,
artlflclal viscosity is added to the continuity equatlon }

The weak form of (9) is obtained upon multiplying by an

_ arbitrary functlon and 1ntegrat1ng over 8. Applylng Green‘s
" theorem to remove the second derivative from the equatlon one

obtains
o3 3¢ * (U + eVoj) ¢« Vp = e ¢, == 4% , (10)
f T dN
where Q% is the normal derivative on T (positive in the out-
an

ward direction).

The time discretization chosen employs central differences
on time derivatives and time averages of space gradlents 1n Pe

'Denotlng the time step by T and the time index by n(t t + nT)r

n-1".
(11)
= ,.;9‘,' :(;,J_ (;i%) + (-ZT;_) : qg + 0(;2;

If ¢J were the B—spllne aSSOClated Wlth a node at whlch
P is unknown (no boundary condition applies), substltutlon of o
equation  (8). lnto (11) would yield the finite element equatlon ‘
corresyondlng to the denslty varlable at thls node.v The ve1001ty

equatlons are. obtalned by a similar procedure. The chosen time

' discretization has ‘the advantage of yleldlng (implieit) llnear'

systems of finite element eguations, second order in time and

ffqgrth.order ;n_spaee,.excepteat.the.downstxeam.boundary, where -



the second order accurate quadratic (or first order accurate linear)
extrapolation boundary condition applies.

Local Eguations

On a given triangle &, the trial function for density may
be written as ' '

10 . .
pe(XJYIt) = ééi DE ¢£ = ET o , {(12)

where the Py are density parameters assocliated with nodes on
this element, and ¢£ are the corresponding B-splines, with

~T

P = (P1r Por oser Pig)}
: . : (13)
T ' :
" = (1, Par eeer P19)
With similar definitions for velocity components,
o %? _
' > ' =
u= &5 u£¢g = 1 .@
(14)
- _ =T
v = £=l ng’g v L) r

the time discretized finite element equation contributions from
the triangle Qe are as indicated below. A more detailed deri-
- vation of these equations is présentEd-insreference 10.



Contlnulty egquation - Contribution from a single element

{(No artificial v:l.scosa.tv)

[ff 507 dxdy—'r( ff ¢J:y'@@ ddy-%-u_Tff - 29" dxdy)
- T(Fﬁfr q;J%T' ax - ag'[; ¢ 0T dy)] Pl = [ff Y axdy

e . e
(=T T =1 [f T
" T(an-j-g b5, 99 axay + unf‘/; by 5 00 dxdy) (15)
. e . ] S C
- T —T T .\ =
+ T(_V_nf ¢J@@- dx - .unf daJtI!.@ dy):[ Phn-1
I:e . : I‘e |

x-momentum equat:l.on - S:anle element contribution

{( f f Jo" dxdy) Pt [;jl vy f f %%‘P‘I’ dxdy} ot
+ 'r[g ) sz %@m dxc'ty] ot 1}
._ +§_[(ff ¢J'y'u @ dde> n+l (fj;a '(psryuhéafx dxdy)‘_’n_"‘l] :

e

(1l6a)

| 2t ff n T =n+l _ ff n T _ —n+1 7
e = fe .
(c_ori’t* d.)

‘11
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T n.T n-l-l n. T n-il
= & é
R [@r g0y 9% ) dgHe, d*‘) ]

e

_ %[2(5‘; ) th xdy) oo+l (9%: u ¢J dy) n+l:|
e

¢

_10

_ =TV [ T —n~1 _ 5, o0 f T -n-1
= r, !(ffs_; ¢ 00 dxdy)u T2 Yy _[;2 ¢J¢2'Mr§! dxdy]u
[<) . L. Ha )
1= -1 n
- T[ﬂrl 2 ff 0} ¢ _dxdy a + 2Tfjs; P ¢J,x dxdy
- e
5T n T ' —-n—l
axa (. f
[(ff ¢J1Y ' % Y ¢J,y , dxdy ]
2T n T ff 5T )—-n-l
R [(2]1[; M ¢J,x@, dxdy ( i) qJJr dxdy Vv ]

e .
(l6a)
'd.)
S ngT —n~1 9{ n. T -1 {concl
R'S l:(é'r _¢.Jl~1 ‘P’y_ dx)u | o+ ( - ¢JI.1 @'x dx)v_ :l
e e

| y~momentum (l6b)

| Phe contribution to the y-momentum equations from a single
element may be obtained from the x-momentum eguations by inter—
- changing x -and Yy, then reversing the algebrazl.c s:.gns of the

boundary integral terms. 'I’hesa, equatlons are asymmetric in x

12



and y, when written with the boundary terms changad to area
integrations using Green's theorem for the plane.

Boundary 1ntegrals vanish when ¢J is not associated with
a boundary node. When ¢J is so assgocisted, all boundary inte-
grals over portions of element boundaries which are not coinci-
dent with region boundaries cancel in pairs.

Numerlcal Quadratures

The iterated 1ntegrals of equatlons (15) to (16) are ln all

- cases inconvenient, and in the case of nonlinearities impossible,
to integrate without numerical quadratures. The question of what
quadrature scheme to use, and what order of accuracy it must
possess, now arises,

If the order of accuracy is insufficient, the overall accur-
acy of the method is lower than otherwise obtainable with cubic
elements. Hence one very redeeming feature of the cubic element
is Vitiated{ the same accuracy could be achieved more economically
from use of lower order elements whose accuracy matches that of
the quadrature scheme,

The gquestion of proper order of the quadratu;e—scheme for
non-degradation of the built-in accuracy of the finite element
- algorithm has been investigated by ®Fix (ref, ll) For the present
case, the quadrature scheme should be exact for two~dimensional
polynomials of total degree six.

One quadrature scheme which meets this requirement is a
lG—pqint_scheme of the form
_ o _ 1. | o S ST '(17T

where the quadrature points and weights WJi are found in table

- IV,_page1l34 of reference 12, However, the accuracy requirement

13



is overfulfilled, and the efficiency of the algorithm suffers
in thlS a;pect

Here the integration is over a standard tr:i.angler w1th
rertices of (0,0), (1,-1), and (1,1). Integrals in (x,y)
- space are obtained from the above upon multlpllcatlon by the

3magn1tude of the Jacoblan determinant of the appropriate. afflne :
transformation which maps an element onto the standard triangle..

When derivatives appear in (x,y) space'infegrands,'the corres—

pondlng (g,n) space terms is obtained by the chain rule.

For line 1ntegrals, transformatlon to the standa”d trlangle
yields an integral

L
_[. £(1,n)dn
1

-~

r

which can be evaluated sivth order accurate with a third order .
Gaussian quadrature scheme.

Global Equatlons

- (18)

The linear Hystems descrlblng time tran51tlon of the numerlcal

solution, which result from global assembly of equations (15) to
;(16}, are: ' '

Continﬁity

DPps1 = Fpon-1

Momentum

]
1
l
I
!
I
1
1
!
f
i
!

:nfl,:;Ag n,n=l- .

(19)

C(20)

T



The vectors 3, ﬁ, v contain all unkncwn nodal density
and velocity variables; indices indicate time dependency of
the corresponding computations.

The matrices D, zz, zR, Rz, RR are nonsymmetrlc and varlable

“banded, with stmetric'profile. Velocity associated matrices edch
have identical profiles prior to allowance for any matrix £ill on
LU decomposition. After such allowance 22, RR and zR, Rz
are respectively pairﬁise identical in profile. Storage and
handling of these matrices is discussed in Appendix B, under

mesh generation and mesh associated data arrays.

Matrices employed in the solutian process are triangularized
- by an LU decomposition routine, especially cecded to account for
lack of symmetry and matrix profile. The continuity equatlons
are solved by the usual LU ﬁeohniques. However, a special
eguation solver, the block iterative LU solver, was developed
 for momentum solution (see Appendix A). ‘'This hybrid method
employs the previously described LU routine, along with an
~iterative procedure, to accomplish the momentum solﬁtion.with
decomposition only of zz, RR. | |

Computational Boundary Conditions

For flow problems in which the extent of the oomputetional.
domain is dictated by storage restrictions of the computer,
closmng the pzoblem often involves the enforcement of an artl—
ficial boundary condition on a truncated problem ‘domain. The
forced vanishing of a higher order derivative, although seemingly
~unnatural, is a condltlon often applied in computatlonal fluld
'dynamlos (ref 8).

Foxr example, the motlvatlcn behlnd linear extrapolatlon as
a downstream ‘continuation is the ldea that sufflcmently far
downstream the flow variables should vary linearly with outflow
- direction. This would 1mply-a:vanlshlng’second‘derlvatlve.;n.»’
the vicinity of the outflow boundary. Should one foroe instead
the vanlshlng of thlrd derlvatlves, the result 1s quadratlc
'extrapolatlon. ' . '



Consider a finite element triangle orilented with one edge
aligned with the outflow boundary and cme edge perpendicular
tq it, with vertices at points Pl(xn,ym), 'P2(xn+l’ym}’

P3 (x
on this triangle has the form -

b1 Y1) with X .1 = ¥, + h. A cubic trial function

f(x,y) = A+ By + Cy2 + Dy3 + (E + Fy + Gyz)x
p (21)
4+ (B + Iy)x% + %3 . o S

The condition (trapezoidal rule)
h | /ag T | |
£ = £ 4 _.[(__ + (35) ] (22)
mklo R 2 QNex/, Nl L |

forces J to vanish; it represents the finite slement counter-
part of guadratic extrapolation, as applied in finite difference
settings. - .

-The counterpart of linear extrapolatlon is not so ea51ly
achleved. For example, the extra condition .

gf) ;__af) I - o
% T 9% (23)

yields the_(Euler integration)_formula

af
fn+l f + h{z= 5% . .

(24)

-Conditions (22)’and (23) force 'J together with H + Iy ; to
-vanish. This produces llnearlfy over the triangle base, but not o
: at other p01nts. ' '

. True. llnear extrapolatlon would,requlle TI.:.O as well;
a condltlon not naturally eneorceable. Llnearlty of the trial
functions near the outflow could only be achieved by employlng
Ca patch ‘basis ‘(the replacement of cubic functlons by lipedr

16



basis functions in this region), which would somewhat complicate
the program. In the absence of this extreme, the coefficient
I{y =~ ym) of (21) can be kept small, and linearity apptoxi—
mately achieved, by using:a fine mesh grading in the y-direction.

- It is concluded that quadratic extrapolation is the more
natural of the two. Further support for this conclusion is pro-
vided by a Taylor's series anelysis; even were true linearity
achievable, the quadratic extrapolation affords an extra order
-of aecuracy. This is particularly appealing, inasmuch as '
inaccuracy of the extrapolation can build a numerical boundary

_layer of error.

. Purthermore, from a physical pOlnt of view, near-boundary
distortion to some degree is to be expected from linear extrap-
olation, due tv enforced outflow derivative eguality. While
linearity may in some cases be a physically well-grounded assump-
tion, one Would not expect it to hold in a shear layer, even in
steady state. Thus, non—normal dlffu51ve forces are to be expected,
' since derivatives are unnaturally modified.

Finally, the most compelllng argument in favox of quadratlc
1 extrapolation is the following: As clearly seen from equatlons
(22) to (24), were linear physics present, the quedratic extrapo-
lation does not preclude its being modelled; whereas, in the
opposite circumstance, the linear extrapolation'éan indeed force
unnatural distortion, the degrse of which will depend upon hear

boundary mesh reflnement.

Comparlson of Results Eor FPEM and ADI Computatlons

of a Fren Shear Flow

The finite element code initially developed under contract

| NAS1-11707-37 was first applled to the jet m1x1ng problem des-
crlbed in reference 7. However, program‘structure prohlblted mesh
reflnement extensive enough to resolve the flow, resultlng from
'1n~core storage of all system natrlces. As a consequence, the
code has beeun reconstructed to provide greatervmesh refinement
capability. Solution of the continuity equations is completed .

7



-

prior to commencing assembly of the momentum equations, which
frees space occupied by the D-matrix. During momentum assembly,
further core is made available by building up the 2zR and Rz
matrices on a disk storage device. The inconsummate amount of
manual labor associated with providing the finite element twi-..
angles and mesh associated data arrays is now replaced by the
automatic mesh generation package discussed in Appendix B.

Due to suspieions concerning the physically weilhposed
nature of the "wall-jet" problem, by decision of the technical
monitor the first application of the restructured code has been
fluid dynamic calculations associated with a parallel two stream
mixing (see 'figs., 1 and 2). In,thls sectlon numerlcal results
are presented, as well as comparlsons with the ADI solution for
the same physical problem (ref. 7). The major difference in
problem formulation between the two methods concerns computa-—
tional boundary conditions; gquadratic extrapolation for the
finite element method (FEM), as opposed to llnear extrapola—
tmon for ADI.

‘Differences in Domain

The ADI method was applied on a 10 x 122 grid point uniform
_rectangular mesh, with unit increment h = .025. For FEM pur-
poses, economy was achieved by truncatlng at the top, leaV1ng
a 10 x 100 grid 901nt mesh. However, the final FEM mesh was
much coarser.

The 10 x 100 mesh was triangulated as follows: First;
coarse rectangular grld was superlmposed then each rectangle
'Was dlssected to form.two trlangles. In: the x~d1rectlon the |
- grid was rather coarse, 1ncrements were respectlvely of 1engths
.~3h, 4h, 2h. . In the y~direction, mesh increments were 3(3h)
~ spacings; 22(2h) = spacings; 1(3h) followed,by 9 (4h) spacmngsr
ending w1th 1(3h) and 2(2h) spac1ngs. The result is a non- o
”unlform mesh, more reflned in +he shear 1ayer,-near the outflow

(to afford more accuracy for the quadratlc extrapolatlon);‘and
- at the top. = ‘ '



- This triangulation produced a 4 x 39 rectangular mesh yielding
228 triangles, characterized by a maximum of 672 possible unknowns
per dependent variable (see fig. 3 for placement of FEM unknowns
on a triangle).' Actually, application of boundary conditions
reduces the maximum number of unknowns per dependent variable
to 612. In contrast, for this same domaln and the unlform.mesh,
ADI involves approximately 900 unknowns per dependent variable.

Boundaxry Condition Differences

Along the top, steady state converged ADI function values
were employed as boundary values for FEM calculations. Except
for the.type of downstream continuation, other boundary treatment
and function boundary values were identical. Derlvatlve boundary
values were obtained from a spllne fitting routine. o

For initial flow field, interior values were cbtained by
linear interpolation, with function values of the outflow -
differing by as much as 50 percent in function (aﬁd much
larger in derivative) values from the expected steady-state

“Artificial Viscosity

An artificial viscosity term characterized by'»e = ,0001
[see eg. (9)} was added to the continuity equation. Since a
stability analysis (ref. 10) indicates marginal Stability for

the FEM formulation of the con:inuity equation, this theoretically
adv1sable but practlcally negnglble safety factor was deemed
necessary. An order of magnitude larger ¢ is requlred to pro~

- duce notlceable chr..ngesr and ‘two orders of’magnltude larger to
'produce max1mum one percent chdnges,'ln ten steps, hence, for

. practical purposes it would appear the art1f101al viscosity can
besignofedf(nOne'was used in the corresponding ADI caloula@iqns)tv_

Numerlcal Results

Steady state results, for computatlons w1th Re = lOOO,fs
g = 0001, ’and quadratlc contlnuatlon, were eSSentlally achleved



with the following sequence of time step sizes 14(.001),
7(.002), 35(.005), 49(.01), £for a total of 108 iterations.
The program was allowed to run furﬁher; and numerical steady-
state resulis are presented after 186 steps. The maximum step
- tolerable has not been determined; although more recent compu-
tations appear reasonable when a step size of .03 is employed.
Hewever, catastrophic divergence occurs at step sizes of around
10 CFL. [The‘CFL‘(explicit) stability limit for the ADI mesh.
is approximately .023.,] Thus, it would appear steady state
could be reached 1n fewer steps, by cunsmstently using the
maximum tolerable step. ‘

Veloc1ty vector plots for the FEM flowfleld, evaluated at
trlangle vertlces, are presented in figure 4. To gain some
idea of the comparative density of FEM and ADI grid points, the
FEM flowfield is interpolated to the ADI grid. us;ng the cublc
finite element model of the solution (see fig. 5).

Figure 6 shows steady etate velocity and density variations
at stations x; = .075 and X, = .175 in the flow. The pressure
'is constant at .00389 over the field, with maximum deviations
of 5% 1075,

Table 1 shows actual numerical differences between the Ffinal
steady state FEM and ADI computations. Steady state was defined
by the convergence criterion o '

Afn
— i 001 4
N
7whefe"ﬁf' fn+l _efn ' is a time difference and f = pr W, or

v. -Table 2 and figures 7 to 9 present percent differences between
- the two. calculations,

 4ifference - |FEM - ADI} o
_% qlfﬁexenc?”—.l__jﬁifff_l g 100:
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. with ADI results as base. As expected, extreme differences

occur in the mixing region, where boundary condition differences
on the outflow have most efFect.

Due to the fact that the normal veloc1ty component was zero
Or near zero over relatively large regions of the field, lack of
'enough smgnlflcant figures of acguracy contrlbutes to misleading
percent differences in data for this component unless this is
taken into acecount. Therefore, in computing this data the percent
difference was automatlcally set to zero if either = '

Ivl.§;5 x-lDf?.
_or_the_actua; difference satisfied
|FEM ~ ADI{ < 1b~5' .
Thus;.oniy four.siénificanevdeciﬁai places aof accuracy erelassumedn

1n the FEM solutlon, thls appears to be a realistic assumptlon, _
from the manner of approach to” steady state. ' '

The relative rates of convergence for the two methods are

~ shown in figure 10, which exhibits transient behavior of the

fIUld dynamlcs varlables of selected fleld;pclnts above, below, -
and w1th1n ‘the shear 1ayer. The time to convergence for the

two methods appears to be almost identical, Wlth the FEM algorlthm
exhibiting the less smooth. approach to steady state. Thms we

. possibly may attrlbute to- the non~un1form tlme step and non~

_  uniform mesh employed by FEM, versus the constant tlme step end
 un1form mesh used for ADI [the ADI calculatlon conSLStently
employed a time Step of (CFL =) 02337] ' '

Cost Comparlsons

© .. The ADI code requlres machine corxe storage of l07 Rgq for the:
1220 node (10 x 12 2) mesh (thls core requlrement would change o

' llttle had the truncated domaln been used in the computatlon)

‘For the" truncated pmoblem, the FEM code requlres 236. K8 words'-r“
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of storage. Moxeover, using the f£ull ADI domain would reguire
approximately 20 percent more core, since'the FEM core size is
problem dependent. The CDC-6600 CPU time for ADI is .00374
sec/node and FEM requires .229 se¢/node, for each time step.
'Additionally, the FPEM code utilizes .8 sec/node of PPU time

per step, for disk reading of time invariant data (which othex-
vise would require additional CPU time per step) and disk buildup
of system matrices zR, Rz.

To provide some idea of where FEM CPU time is used, normal
data_printout'and assembly of system matrices requires approxi-
mately 86.5 percent and equation solving 13.5 percent of the time
used per step. Since over 1800 linear equatlons characterlzed by
large bandwidth nonsymmetrlc matrices are being solved per step,
it appears any inefficiency of the code occurs in that portion
devoted to equation assembly. '

Alternate Program Design

In restructuring the prdgram design of the finite element
code produced under contract NAS1-11707-37, two versions of
code which implement the basic numerical algorithm and which .
provide greater mesh refinement capability have been produced.
Ver51on I 1ncorpurates some mlnor de51gn alteratlons and program
optimization performed by personnel of Computer 501ences Corpor~
ation, and is structured so that only one of the matrices D,
z%Z, 2R, Rz, RR occupies core at one time. As equation’
assembly proceeds the density and velocity local stiffness
matrices for each elemenﬁ'are assembled in pawvallel. In turn
eaéh glébal matrix is read into édfé frdm disk,'10cal'equation
contributions are‘gLobaily-distributed, and the matrix is written
-back. . As'a result of these huge data volume disk writes (say,

20,000 words per write), peripheral processing time is exorbitant,

and the result is extremely poor throughput, caused by exce551ve

'roll—outs of the prOgram.due to its heavy demands on system
resources. For example, in one run preceding a moderate number -
of time stepsfgday_file:entﬁies%stretched-over_a twelve~hour ..
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period, with around lS roll-outs, although total dollar cost
quoted in the day file was around $200. (PPU time carries no
charge on this operating system other than through o/s calls,)

, Design philosophy of Version II, programmed by the authors,
centered around the goal of minimum core requirements as well as
minimum data volume at each disk write. The outcome is greatly
improved throughput, due to decreased data volume per disk write
(a maximum of 220 words/write except for a few isolated large
volume writes per step), at the expense of a greater number of
o/s calls and slightly greater core requirements. In version II
continuity assembly and eguation solution is disposed of, without
disk storage of any data invelving the D-matrix, prior to com-
mencing assembly of the momentum equations. During momentum
assembly, the matrices‘lzz and RR ‘are built up in core, with _
local element stiffness matrices for 2zR and Rz written to disk
triangle by triangle, each record of length 200 words. In-core
V global matrlces are then ertt°n to dlsk, element stiffness
matrices are read, and 2zR, Rz are assembled in the space

vacated by zZz, RR. The global matrices zR, Rz are then written

to disk by rows, one record containing one row each from zR and
Rz. zz and RR are then read from disk (an lsolated large vol~-

ume disk operation} and during eqguation solution the rows cf :ZR, '

Rz are read as needed,
A comparison of the rél&tive'merits of the two-versiohs“is_-'
provided below with reference to the 228 triangle mesh. It

- should perhaps be remarked that the data below is, approx1mate,

based on a few runs of duratlon fOur tlme steps each.

o/s Calls. Ver51on IT requmres twmce as many as versmon I,
at approxmmately l35/node per step, on a normal run. . Dependlng
upon the number of programs in .the system simultaneously competing

for .the same disk device, PPU time for version IT can vary by as - .

much as 200 percent, for the same number of time steps.

Core storage. . 155'K8:.Y3r5i9n-I:raS;OPQOSed.tO;235 Kgr
version II. | I | o E
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Throughput. Excessive roll-outs for version II, a;ound_lo
to 1 compared to version II. This can mean an extra day of
elapsed time in getting the program back to the programmer,
at some times two or three days turn around time (without
priority). |

Dollar Cost, Total cost indicated in the day file shows

version II twice as dollar-wise expensive, due basically to
increased core and twice the npumber of o/s calls.

CPU Tine. Approximately the same,

PPU_Time. Approximately three times as much for version I
as for version II. - '

As a result of.program throughput and excessive demands oﬁ
system resources of version I, version II was chosen, after .
conference with personnel of the Analysis and Computation Division
at Langley Research Center, as the vehicle for steady state numer-
ical solution of the free shear flow problem.

CONCLUSIONS

Under contract NAS1-11707-37 and NGR 1098 a finite element
algorithm for solution of £luid £low problems characterized by
' the two-dimensional Navier-Stckes equations has been developed.
Proof of concept was provided by the calculation of primitive
_flow varlables for the free shear flow problem, Whlch prov1ded
| excellent numerical results in comparison to the ADI method.
Unfortunately, the algorithm places heavy demands on computer
' system resources, in terms of CPU time, core storage, PPU time; =
and o/s calls. Thus, total dollar cost of executing the algorithm
appears extravagant Moreover, due to algorlthm complexmty as
well as the host of data manlpulatlon and supportlng programs
essent1a1 in minimizing human labor, developmen: time is much
in’ excesc of that. normally. expected.ln finite dlfference.
appllcatlons. '

The Crltlcal questlon in evaluatlng the method 15 how much
_performance 1mprovement might be expected by alternate program



designs alternate analytical formulations, such as the use of
a simpler element. Versions I and IX of the program give an
indication of how simple trade~offs in system resources supply
drastlcally different performance in terms of dollar cost )
opposed to less excessive demands on system peripheral devices
and improved program throughput.

Considering the present program design, it appears that
the method used for solving the large systems of equations that
arise is by far more economical than other known direct or in-
direct linear system solvers for equation classes as general as
those presently involved. Moreover, the total I/0 design of the
FEM code as well as economy in core storage threugh use of disk.
devices is enabled hy the solver features which allow system
matrices to bhe processed by parts during equation assembly and
solutlon.

However, one might reasonably expect that alternate program
-designs oxr other analytical formulations could yield further
economy in terms of equation assembly time. For example, one
factor that stands out as a contributor to inefficiency is the
16~poin£ guadrature scheme ueed for evaluation of integrals over
a triangle, Theory predicts the quadrature should be exact for

- two-dimensional polynomlals of total degree six in oxrder not to

vitiate the accuracy of the method achievable from cubic elements
(ref. 11). Further theory predicts the existence of eight oxr nine
point quadrature schemes possessing this degree of dccuracy .

(ref. 13). Unfortunately, mathematiciaﬁs have yet to sSynthesize
such a scheme; research is lagglng practlcal needs ln this area.
Thus, one may percelve 51gn1flcant 1mnrovement in algorlthm per—
formance could such schemes be found, since there is abundant
'use,of'quadratures‘thrOughout the code. -

rBy way of aiternate analytical formulations; there exist
-cubic elements on rectangles (ref 14). Whlch could equally well
replace the present cubic elements on trlangles. Moreover, . "
9~p01nt quadrature schemes for rectangles of the necessary degree

of acouracy do exlsL, 1n practlce as well as in theory.-_One might
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fault the general applicability of rectangular elements for regions
with curved boundaries; however, this seems an irrelevant point
since fairly good iscparametric rectangular elements are known.

On the other hand, one might conjecture that for a problem
of the present complexity, the simplereshould be the approach
to its solution. Hence, linear elements come into consideration,
The matrices arising could be expected to be of larger dimension,
but bandwidths should be significantly decreased; one could pre-
dict that equation storage would be somewhat comparable. More-
over, at lower degrees of accuracy such as is needed with linear

elements, more efficient guadrature schemes are available.

In summation, the finite element method developed appears to
have excellent prospects in f£luid mechanic applications, with
respect to convergence to the steady solution and accuracy of

the final results. In terms of complexity of implementation

and computer resource demands and costs, as presently formulated
the finite element method does not compete with standard finite
difference techniques. A critical evaluation of the applicability
of the method in fluid mechanics would require one to decide how
much more favorable would be alternate program or analytic design
in the method of implementation, as well as a determination of

what particular types of problems presently difficult for the
finite difference approach might readily yield to finite elements,
'sﬁch'as'high'Reynolds'number Flows and complex geometry'preblems.
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APPENDIX A

A BLOCK ITERATIVE LU SOLVER WEAKLY
COUPLED FOR LINEAR SYSTEMS

TNTRODUCTION

In some fluid dynamic applications of the finite element
procedure the governing systems of linear equations arising from
the numerical analysis are Weak1y coupled between distinct sets
of flow varlables. SOlv1ng such systems by the usual fixed band
algorithms results in excessive program execution times, in par-

- ticular for large ncensymmetric matrices and the time 1mpllclt
asymptotic approach to steady state solution. However, alternatlve
equation solvers may be developed which exploit the weakness of

the coupling to produce significantly decreased equation-solvinge
time.

Assuming such equation solving techniques are applicable,
the natural implicitness of the finite element method becomes
less of a setback; the method then appears more competitive with
the well estabiished'fiﬁitewdifference-techniques."MoreoVer;'
such equation eolvers could be applied in finite'difference
cettlngs as well, in which case hlghermorder—accurate 1mpllclt
numerical schemes which for efflolenoy do not rely on the tri-
diagonal systems arising from ADI (ref. 8) and spline interpola-
< tion methods (ref. 18) could evolve. " L '

In this appendix a technique which Shall,be called the block
iterative LU solver is outlined, The efficiency of the method is
dependent upon the supp051t10n of a weakly coupled linear system,_
hence, its lack of generallty ln appllcatlon does not grant a
zoure-all for the large nonwsparse nonsymmetrlc system problem.
However, where weak coupling is present the execution speed of
the block solver makes it an opportune method for solving large_
llnear systems. Furthermore, such systems appear frequently -
enough in scientific applications to warrant some general attentlon '
belng devoted to thlS hybrld,technlque.f ‘ - '



WERKLY COUPLED LINEAR SYSTEMS

Consider the linear system

AT =B R N ‘ : o o (a-1)

where A is an n-sgquare matrix, with % and b mn-dimensional
vectors. Partitioning the vector % to obtain a vector X which
has p components and a vector T Wlth q components, p + q =

1nduces the parbltloned systems ' o

1 — —
B 1 ¢ X : b, ' ' - S s '
SR .}. — e = | _ (A~2) -
D | E ¥ by
Definition 1. The system (A-2) is sald to be weakly coupled
between the X, ¥ sets of variables if the quantities
c, = //B7Y //C//
. o _ - (A~-3)
C, = //B7YS 4D/ o
are small compared to unity. -
Here we use the usual Euclidean norm //ﬁy/E  for.vectorsp
- and the compatible matrix norm . .
//M// = max //ME//, -
118/1 =
Since
//c//_-.- //D// e e e g e
c, o tand g > LL2LL . s
x 2 77877 an Sy 2 77777 S ans)
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the essential content of this definition is the intuitive idea
that the system (A-2) is weakly coupled provided the elements
of the matrices C, D are small compared to those of B, E.

DESIGN OF THE BLOCK ITERATIVE SOLVER

Consider the following equations defining an iterative
solution of equation (A-1): '

gt - 5, - oFF | o | | .
’ k = l; 2; 3’ » » =« 1 ' (A’-G)
Skl | —k

EY =b2-’DX

where B, E are assumed invertible, A'sufficient condition foxr
convergence of the iteration is that the coupling coefficients~A.
C ; Cy of {(A-3) each be less than unity; that is, the condition
_ requlred for weak coupling.

Compared to direct methods of solutlon, the efflclency of
this iteration is dependent upon the sparseness of C and D;
the method of inversion'of B, E; the closeness of the initial
vector to the true solution of the system; and the weakness of
the coupling. Of these, the method of inverting B, B is
usually the only controllable influence. The block iterative LU
solver proposed here is thus to be comprlsed of the block Jacobi
iteration (A-6) using ai LU decomposition for the inversion (once):
of .B} E,. with subseguent front and back solves at each itera-
tive step. (Of course, the matrices B, B must be sufflclently
-alagonal domlnant +to allow the LU decomp051tlon ) '

A tandem advantage of such a solver, in addition to speed
'conSLderatlons, is that for large systems ‘the. problem spllts~
‘naturally into pleces whlch may be stored in core or on external

. I/o dev1ces.A For example, the matrlces B, H may be retalned

in. core, and C, D row stored on dlsk, to be read as needed A
when formtng’the xlght nmembers of (A~6). For large systems thls
-factor alone could dictate the choice of the hybrid solver.
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PROGRAMMING RESULTS FOR A SPECIFIC APPLICATION

Weakly coupled linear systems of the form (&-2), with

p=q= %7 arise in certain time implicit finite element models
- for solution of the two-dimensional viscous compressible Navier- .
Stokes equations in primitive variables, such as the present,
where the assumption of constant total temperature removes the
necessity of solving the energy egquation. ' Here system (A-1)
represents the finite element modelled momentum eguations, and
X, ¥ are the collections of u, v velocity variables associated
with mesh points. The finite slement algorithm is such that ele-

ments of the €, D matrices contain a factor of timestep divided
| by-Réynolds number, T/Re; not included in the elements of B, E.
Weak coupling results from small time siteps and high Reynolds
number flows, say 1T = 0(1073) and Re = 0(10%), in which case "
experimental observation shows the elements of B, E are 0(10-%)
compared to €, D elements, which are 0(10~8). Hence on a 14~ .
digit machine such as the CDC-5600 the elements of €, D are
definitely significant in the problem solution, but the cross
. coupling between the two sets of VelOClty varlables is rathexr

weak. '

211 factors contributing to efficiency in execution of the
block'solvef are preseht in the problem discussed. Finite element
matrices are naturally sparse; énd in the present case nonsymmetric
ﬂand.variable in bandwidth ' The coupling is very Weak, and the
1n1t1al vector is the flow fle_d one small tlmestep removed from
the final solution vector, assurlng rapid convergence. The B, E
'matrides“é:E'small perturbations from symmetric, positive definite -
matrices, so the LU decomposition applies. ' '

The test case presented in the. present paper is. characterlzed
by a system of n = 1086 equatlons, with the square matrices
B, C, D, E (zz, zR, Rz, RR) nonsymmetric and variable band,
3”but with all hav1ng ldentlcal Jntraband distributions of zero = -
and non-zero elements. All matrices were profile stored (ref. 17) .
- with space allowed:for'matrix,ﬁill_in the decomposition of B, E.
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The LU decom9051tlon.algorlthm took no advantage of matrix sparse~
ness other than knowledge of profile {fill and variable bandwidth).
The semi-bandwidth* of each of B, €, D, E, Aif COnSldBred as
fixed band matrices; was 24. Thus, the semi-bandwidth for the
composite system (A-1l) would be 567. The matrices B, E were
stored in-core, with C, D row stored on disk, one disk record
being comprieed of one row from C and ene row from -D} To solve
such a system on the CDC~6600 computer requlred apprOXLmately

12 seconds CPU. time and 8 iterations to convergence LnltlallY,
and approximately 11 seconds and 7 iterations after-the-tlme
asymptotic solution had progressed several steps (showing the
influence of the initial vector). Tterative improvement (ref. 5)
experimentation indicates 12 significant flgures of accuracy (on
“the 14-digit CDC—GGOO serleb) for tre solution,

*® A;mapriX;oﬁfpandwidth; 2m. + l_ﬁhas;semiﬁbandwidth;jm(integer);



APPENDIX B

A MESH GENERATION PROGRAM (MESHGN)
~ INTRCDUCTION

Manual generation of a finite element mesh and mesh associated
data is most time consuming; for large grids-the task becomes nearly
impossible to accemplish accurately. For example, althoﬁgh.modern
computers can solve a plane stress problem (steady state) with a
theusand elements in, say, under ten minutes, the division of
the field into elements and the associated data preparation and
checking may take several days. Moreover, one has no guarantee
that the first trial run with the finite element numerics model
will not uncover some irtegularity in solution beﬁavior requiring
mesh refinement in portions of the mesh, if not over the whole. ‘
mesh, requiring thz job be repeated! Thus, an essential compon-—

. ent for success of any finite element endeavor 1is the avallablllty
of an automatlc mesh generatlon program. '

To overcome thls obstacle, an automatlc mesh generation
'routlne ‘has been programmed. Since the p:oblem domain is rec-
tangular, the structuring of such a progrem of this code appeared
‘more feasible than obtalnlng and becoming famlllar w1th the
intricacies of other mesh generators on the market.

The code developed trianqulates a rectangular region, umbers
the nodes assoc1ated with trlangle vertices and centroid, and
generates mesh-associated data arrays. Use of the code reduces
mesh7generatidn manual labor requiremente-to;about,two‘hours,_for
a large mesh having above 600 unknoWns per dependent varieble,_

Meéﬁ:Geometry
" The routine superimrposes a rectangular grid work on the ”
. problem domain, as in finite differences; then divides each rec-. . -
'tangle into triangles (see fig. 3). In the numerical evaluation

of boundary integral cguadratures within the finite element algoxr-
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ithm, it is assumed that no triangle has more than one edge on
the boundary of the region. Therefore, top right and bottom.
left rectangles are subd1V1ded into tllanglee whose hypotenuse
is tre lower left to +top right dlagonal of the rectangle. The
reverse situation applies for all other rectangles. The ifinite
difference rectangles are formed by mesh intersections of the _
lines =x = X:r i=1l, 2, «ve N¥XG and y = Y;’ j=1, 2; «s s NYG.
Some degree of irregularity ln the mesh may be achleved by non-
uniform spa01ng of the xl, yj “subdivisions. For proper’
functioning of the routine the minimum number of triangles that
can be configured is eighteen; i.e., NXG and NY¥G must each.
exceed three. S o |

MESH NUMBERING

Trlangle Numberlng

Trlangles are numbered left to rlght and top to. bottom,
=1, 2; veo ; M. Here IT de51gnates trlangle number, and
M  the total number of trlangles.'

Node Numberlng L;

The spatial variation of each dependent physical varlable
in the flow field 1s approxmmated by a flnlte element trial
functlon. Bach trial function contains parameters approx1mat1ng"
flow variable function and first partial derivative values at
.triangle-vertices are referred to as multiple -nodes, having

1three problem nodes a55001ated with each. Triangle Centroids,
are smmple nodes. Nodes are numbered left to rlght and top to

‘vaottom, a level of multlple nodes followed by a level of srmple
nodes (see fig. 3) '

ﬂTheitWOedimensional“array,NODE(M,;IDS)}’ M = the total numbexr =

of nodes} 'indiCates which geometricei nodes are associated with
a partlcular trlangle. Node numbers for trlangle IT are stored
”31n NODE (IT, J), J = 1, 2, ceay 10 These ten node numbers are
~ obtained by proceedlng ceunterdlockWLSe,around ‘each trlangle,
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procuring sequentially geometrical node numbers previously
assigned, with the centroidal node procured last. (For meaning-
ful assémbly of the finite element equations, it is essential
that a consistent choice of either counterclockwise on all
triangles, or clockwise on all, be made.) Normally the starting.
vertex for a particular triangle is of no consequence. However,
in order that boundary integrals in the finite element numerics
be properly computed, the present program assumes the starting
vertex for triangles with one edge on the boundary be interiox
to the problem domain.

Variable Numbering

‘Node numbers just discussed refer to a physical location in
the problem domain. Now consider in turn each particular physical
dependent flow variable, such as density or a velocity oomponent..
There is associated with each node a parameter of the trial
function which approximates this flow variable. If a boundary
condition applies at this node, the parameter is a known variable;
otherwise an unknown. Each category of variables is numbered
separately, and these numbers do not necessarily coincide with
node numbers. '

Unknown variable pumbering. Proceeding triangle by triangle,

and counterclockw1se around the nodes of each, the mesh generator
a551gns sequentlally ‘unknown variable numbers of nodes where no
boundary condition applies, provided the node has not been num-
_-bered_already'on a previous triangle. To minimize matrix £ill.

in the resuiting system of finite element'equations} the unknown
variable numbers are then reverse ordered, as in the Reverse-Cuthill
bandwidth_minimization.routine. It has been verified that;ﬁhis--

- process gives near minimal profile for'thé system of equations.

:For example, the bandWLdth mlnlmlzatlon program of Poole (ref. 15)
did not yleld as economlcal a matrlx storage as the present process,

although it produced sllghtly smaller maximum bandwidth.

Known variable numberlng, The only 1nput to the mesh- gener—

ator as far as variable numberlng is ‘concerned is a list of the
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nodes at which boundary conditions apply. These nodes are
‘sequentially assigned known variable numbers. The input list
of nodes need have no particular order. Of course, a separete
node llSt for density and velocity boundary data is required.

Varlable number access. The array IﬁR(z, IDS) establishes
the correspondence between known or unknown variable and the

physical node with which the variable associates. For example,
the variable number associated with node I  is obtained from ‘
the FORTRAN statement

IV = IgR(IP, I) .
For IP = 2, Iv is a velocity variable number; for IP = 1,
it is the number of a continuity variable.

Variable number dlscrlmlnatlon. The dlscrlmlnatlon of whether

a variable number access yields the number of a known or an unknown
~ variable is determined from bit settings in the array FLAG(M).

If the node associated with the varlable is on trlangle IT, the
bit settlngs of the locatlon FLAG (IT) determlne whether the
variable is known or unknown. The bit settings in location IT
of the array FLAG in géneral display information concerning
triangle IT and variables associated with it.

Slack wvariables. Slack variables, which are definedfbelow,

~are employed in the velocmty components to assure that ve1001ty
variables associated with a partloular node are both known or
both unknown. For example, if one component is known and the
~other unknown, the eqguation

= known value

is assembled for +the known variabiejzand it is otherwise treated

ooas unknown throughout the equatlon assembly and. equatlon solv1ng

: process. ThlS avoids ssparate variable lists between veloclty
components, and leads to determlnlng equatlons for momentum
"'varlables identical in proflle for the two ‘sets of momentum
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matrices. Bookkeeping in the 3iquation solving is greatly simpli-
fied. Throughout mesh generation it is automatically assumed that
velocity variables at a node are both known or both unknown;

node numbers of slack variables are input to the finite element
numerics program, and after equation assembly the proper equations
are modified to produce slack variables,

vriangle Coordinates

Triangle coordinates are created by MESHGEN and stored in
an array C@@RD (M,2,4); x-y coordinates of all vertices and the
centroid., This three~dimensional array is not used in the finite
element numerics algorithm directly: coordinate associated guan-
tities such as the Jacobian of the affine mapping which transforms
a particular triangle onto the standard triangle with vertices
(0,0), (1, -1), and (1,1} (used in evaluating numerical quadra-
tures) are computed and passed along.

MESH ASSOCIATED DATA ARRAYS

The arrays WNODE, COORD, FLAG, IOR discussed in the
preceding section, automatically generated by MESHGEN, are the
output which one would normally ascribe to a mesh generator.

- Before MESHGN Was-eoded, the manual generation and checking of
these arrays, for a 103-triangle mesh, required over a week,

- with no guarantee of accuracy. The avallablllty of this data
permits computatlon of other mesh associated data discussed in
the sequel, such as band structure and storage information for
‘system matrices. ' ' '

In ~core Storage,of System Matrlces .

As prevzously 1ndlcated, the flnlte element system.matrmces
are the denSLty matrlx, D, and the veloclty matrices =zz, ZR-
Rz,’RRI' These matrlces are variable band, of 51gn1flcant maximumn
bandwidth, sparse within the band, and nonsymmetric. _prever,;

- allfmatrices.have symmetric profile; i.e., if matrix element
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alj is nonzero, S0 is .ajl- The use of slack variables forces

all velocity matrices to be of the same dimension and have identical
profile, leading to simpler bookkeeping. The profile matrlx stor-
age scheme used accounts for the variable bandwidth, but does not

~utilize intra~band matrix sparseness.

Let §£ be a vector whose elements aij' are the elements
of a matrix Au which occur in row i, starting with the first
nonzero element and ending with the last nonzero element. The
matrix is then stored as a one-dimensional array by stacking
end-to-end the vectors ﬁi. |

 Matrix elements of D, =zz, RR are accessed by storing
locations of the diagonal elements in the array JT(2,N) N the
maximum dimension of D, zz. The code -

IP = JT(I,K) + J - K

obtains the locatioh of element B of D, for I

the corresponding element location in zz,RR, 1if I =2,

it
et
U]
fu]
u

_ - In performing the LU decompositions of D, zz, RR it is
necessary to know the left and right semi-bandwidths, or the l
number of elements in a matrix row to the left and right of the
‘diagonal. - This information is stored in the arrays IBS(2,N)
and IBL(2,N). Here

' IP = IRS(I,J)

accesses den81ty 1nf0rmat10n.1f I=1l and veloc1ty 1nformat10n».
if I = 2. This convention holds for arrays IBS, IBL, _JdT.

 The mesh generator computes ‘the maximuam bandWLdth for each : .
matrlx row, adjusts the bandW1dth to allow for. any matrlx flll '
occurring in the decompositions of D, zz, RR, and computes
‘diagonal element 1ocations;:(JTJ ‘and- semi~bandwidth 'TIBS}IBEY
information reflecting allowance for matrix £ill.
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Disk Storage of>System Matrices

Two optimized versions of the original finite element numerics
program produced under contract NAS1-11707-37 have been programmed.
Version I, consisting of some minor design alterations and pro-
gram optimization by personnel of Computer Sciences Corporation,
is structured so that only one of the matrices D, 2z, 2R, Rz,
RR OCCUplES core at one time. As equation assembly proceeds,
the density and velocity local stiffness matrices for each element
are assembled; each partially assembled global matrix is read
into core in turn; the local equation contributions are globally
distributed; and the matrix is written back to disk. As lower
semi-bandwidths for each row of 2z, zR, Rz, RR are identical,
the IBS array as described asbove serves all. However, since no
matrix £ill in Rz, 2ZR need be accounted for in the equation
- solving, upper semi-bandwidths may differ between rows of zz, RR
and 2R, Rz. This necessitates the keeping of arrays JTV(N)},
IBLV(N), similar in structure to JT and IBL except for £ill
allowance, which indicates diagonal element storage and upper
semi-bandwidth information for zR  and Rz.

Version II, with design alterations by the authors, differs
in structure from version I. Here continuity assembly and solu-
tion completes, with no disk storage of D, before momentum
equation assembly starts. During momentum assembly, zz and RR
are built up in-core, with local element stiffness matrices for
ZR, Rz written to disk, triangle by triangle, each record of
length 200 words. . In-core matrices are then written to disk,
element stmffness matrices are read, and 2R, Rz are assembled

" in the space vacated by RR, zz. The matrices 3%r, Rz are

written to disk by rows, each record containing one row esach

of zR and Rz. The arrays  IBS, IBC, JT,  IBLV above v
described apply in version IT as well. However, since zR and

Rz must be assembled en toto prlor to any disk write, the JIV

array now used locates only the diagonal element of zR, with

" the corresponding row of Rz stacked end~to-end with it. The

- row records of 2R, Rz -are read as needed in the block iterative

solution of the momehtﬁm eguations. - - '
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Time Invariant Data

In the finite element numerics program B-spline function
and derivative values, as well as area integrals of combinations
of such, are needed at each time step, but do not change with
time instant. These B-spline guantities and time invariant
integrals are computed, for each triangle, in the mesh generator,
to be read from disk as needed in the time asymptotic computation.

39



REFERENCES

France, P.W., Lewis, R.W., and Norris, V.A., "Finite Element
Analysis of the Motion of a Gas-Liquid Interface in a
Porous Medium", Int. J. Num. Meth. Eng., Vol, 9, 433-448
(1975).

Cheng, Ralph T., "Numerical Investigation of Lake Circulation

Around Islands by the Finite Element Method", Int. J. Num.
Meth. Eng., Vol. 5, 103-112 (1972).

Fix, George J., "Finite Element Models for Ocean Circulation
Problems”, SIAM J. Appl. Math., vol. 29, No. 3, 1975 (To app

Brashears, M,R., Chan, 8.7.K., and Young, V.Y.C., "Pinite
Element BAnalysis of Transonic Flow", Proceedings, Inter-
national Conference on Computational Methods in Nonlinear
Mechanics, Huntsville, AL, September 1974. '

Baker, A.J., "A Finite Element Sclution Algorithm for the
Navier~Stokes Equations", NASA CR-2391, Langley Research
Center, Hampton, VA, June 1974.

Baker, A.J., "Computational'Techﬁiques for Pressure Distri-

butions in Viscous Fluid Dynamics", Bell Aerospace Report
No. 9500-920310, Buffalo, NY, December 31, 1973.

‘Rudy, D.H., Morris, D.J., Rubin, 8.G., et al., "An Investi-

gation of Several Numerical Procedures for Time Asymptotic
Compressible Navier-Stokes Equations', Aerodynamic Apalysis

Requlrlng Advanced Computersr Pte 1, NASA SP- 347r 1975

PP. 457-468.

Roache, Patrick, J., Computational Fluid Dynamics, Hexmosa

‘publishers, Albuduergue, NM, 1972.

ear}) .

Oh, Y.H., "Analysis of Two-Dimensional Free Turbulent Mixing",

_ATAA Paper No. 74~594, American Institute of Aeronautics and

Astronautics, New York, NY, June 1974.'

40



10.

11.

12,

13.
14,

15.

16,

17 -

18.

Cooke, C.H., and Fix, George J., "A Finite Element Solution
Algorithm for the Two-Dimensional Compressible Navier-Stokes
Equations", ICASE Report, lLangley Research Center, Hampton,
VA, November 29, 1973.

Fix, George, J.} "Effects of Quadrature BErrors in Finite
Element Approximations of Steady State, Eigenvalue, and
Parabolic Problems", Mathematical Foundations of the Finite
Element Method with Applications to Partial Differential
Equations, Academic Press, New York, WY, 1872, pp. 525-356.

Hammer, P.C., Marlowe, 0.P., and Stroud, A.H., "Numerical
Integration over Simplexes and Cones", Math. Tables and
Aids to Comp., 10, 130~137, 1956.

Stroud, A.H., Approximate Calculation of Numerical Integrals,
Prentice-Hall, Englewcod Cliffs, NJ, 1971.

Fix, G.J., and Strang, G., An Analysis of the Finite Element
Method,  Prentice~Hall, Englewood Cliffs, NJ, 1973.

Gibbs, N.E., Poole, W.G,, and Stockmeyer, P.K., "An Algorithm
for Reducing the Bandwidth and Proflle for a Sparse Matrix",
ICASE Report, Langley Research Center, Hampton, VA, July 1974.

Rubin, S5.G., and Graves, Randolph, "A Cubic Spline Approxi-
mation for Problems in Fluid Mechanics", J. Comps. and

'George, ‘J. Alan., "COmputer Implementation of the Finite

Element Method", Ph.D. Dlssertatlon STAN*CQ-71-203, Stanford
University, February 1971.
Forsythe, G‘E.,.ahd Moler, Cleve, V., Computer Solutidh df
Linear Algebralc Systems, Prentlce—Hall Englewood Cllffs,
NJ, 1967.- ' R

4L



o

TABLE T~ FEM-AD] STEADY STATE DIFFERENCES

0Y Y00g qp
ST @DYd TYNIORNG

!

[A7

= A0000N

Density, ap
x=0. | .075 L1715 . 225
-0, 000G06. { 0.000000 {-0.08C6904].0.003C86
—~+00060¢ .|—D0000C L060603] .0C38E5
—~..000000 - |~-»800900] -.000002) 003004
. 03000C .|~- 000000 «GC0DG2 | «COUG0L
|—s000¢DC - |~ GE0ODC | ,0O0CO02| LB8003C5
~.00000% .|.-.000006} .GO0203} .GCGOECH
—~ 000008 - |- 003006 .Co000% | L, CEZLLT
—s BGOCGE. |--000008 «G0GC04 ] .0URGOB
- {--a 0000GE |- Q03003 ] 060305 000629
| ~wBEGOOL .| 4000801} LOGGIOS| .OCDCLO .
%, CA0000..] 000304} .00GJ0A| .0GGGLE
s GO 000EC «000004 | LGOGRNA7 | LC50Cid
——.00000C | +000001) .EOGI0D7 ] LOOEC2D
. 0d000C | ,0CJ00L} L08CCOS| .O0CBLLS
—.030630C +000001| .0G001L | .00GCHL6 |
—.00000C. | -0B0084) - .000340 | .GCHE23
e 00000C.{~.000004 | .C02069 ] .0C53G21 -
e (00306 | 000006 086847 | +502029
:ee D0000C- |- 4008003} . 005243 | LDBBCIAT
} ~+000006€C, | 000011} .GOUNDA | .308003
|~=s.00.006C .| 4000086 | -.00004C | ~sC33L2T
—-00000C...{ -, 8068046 -.00C227 | -.GCEG51
|  +00GODCG.)-,009030) -.,06C033 | -~ GUCCLG
~—<CDOGGG. .| ~.B00021 | -.200029.) -. 082036
~—»00006G0. .| +EEODC7 | -4G20305 | GOGEEL
s DR0Q0G .} 2003035 L00C369 | J0a0C51
. 20008C .| .003020 »0TC 0058 »GSOC62
T .gddocn |-.002003| .OC0OO14 | .50GC22
|~—eDG0000. [=+ 080005 ~.000244 | =4 GLIG0Y
. 060009 .| =.0C0064 ] ~2006d1D | -. GOOGT9
_._.000000 |-.000005 | ~,0G0CCR | -, 020362 .
.—+ 000000 .]~+000004 | ~,006001{ .003GC2
000003 j=e00000% ] -~ 0CTOCH | =« GOCGLGE
._.000068 lL-.000804) ~.00C00% | ~.0020CHh
s 000002 |=+0030084 ] ~o000626% | ~« 030500
«—a 12000T |=20093C6] - GCGUOCH | ~. GESTO0
-+ 050308 |[-.0000CH | - CLCO0H | - DG5C0R
—s 00388 | ~«0000VG5 | -BDGCOS | -2 GC3L0E
AL GN0T e OB 0G0 ] =, 330G




£y

a2 20L 7 -

-, 081003

o COIGEL

- TABLE I - CONCLUDED, .
YsEm ~ “aDT ' g YeEM ~ VADT
~Streamwise velocity, Au Normal velocity, av
=0 1 .075 |..175% .]-.225 -— x =0 075 1 175 4 ...225
D.a00060_[-0.000003 | 3,060005 | D.0CCCEC 0,0000C0 | G.033CCE | 3.08C000 § 0,C33C0CC0
.. gongdn 000061, ] ~.000016.| ~s 00001 L 008QCO .| ..0C3507 ) _.D0CI05 | G.853CGC
—.0og0onc | -.0800C7 |.~.000012 | - 050030 _.0pp00Ge | ., 080000 [ .00230C [ .003C10
—.n0p0sC | -.000607 | -.06C023 .} ~,000043 e -000060--j-- - 003063 }—--CGGETOD LCG5C12
. 000050, ~-.0000C8 | ~.006033%.} ~<000CH3 [~ -, 000CG0 }—.0CJ85C |—aGECAEER LBG3021 |
. 000G6d5 | -.000040 [ -, 0060847 | -.0G5C78 .+ DB0GOED | LC00G82 |, B6L800 .0CGT13
— 000C0C.| -.000042 | - 000356 | ~.0D08C92 .« 00000CG | +0G6000d | -.0C67023 V033012
_.00G00C | ~.000015 | -«GR0064% | - 000104 —« 000200 |-—+ 063907 {~ «6GE5d2 | .CJBTLL
., 000060 | -« 083646 | ~400CI70 | ~aG20415 e 00CCCD [ -.. 063063 }-- «CGEID2 «G33CAC
030037 | =-,000018 | ~,00C475. | - 000435 . +008G0G0 | <0GICCEC |- 066302 SOGIC01L
e BED0IC | =4 000028 ) ~4GGL0T3 | -, GOOLGL . . B0GGED ,0ga3ep02 BOCLLE GGLo22
__. 000008 | ~.200032 | ~.00C469 | -4 DEH1I6L ..+ 060300 | 070903 L0001t 0oaces
—e 0300035 | =-4003035 | -, 080124 | -, 303184 . 080080 | .0R300C 200E022{ +CCoL29
. 308300 | —.009041 | - CGC1LD | ~.CC0207 .+ GOOGEE.|. +000003 LOLC313 2 3GLC20
000303 { —+000035 | ~.G0L1R9 [ - 053240 —.060C0C | ..0CODGE LOBC18 | 053011
_.020C8C | -.000046 | -.000167 .| -.000269 ]~ 000CCE }—.CO000D WG0G0L3 |- G5GOGCT
| .g09g00¢ | =.0008382 | ~.0GL173 | -, 000317 -« 000000 |- 40583060 |- L80GRO- L EBE0CC
DC036C | ~« 000029 ~.00C458 | ~. 000332 .+ 000GEC |- -, 0080003 }-.,00C363 |—— 025602
. .000030 } -.00004% | -.000445 | -, 520270 — «0G0000 L--+000003 |- 005305 |——CGGLOG
. 000008 | ..0030CL| -.00GCH5 | ~-036C85 —»0g000C |...000000 |—..CC0585 |—.000GEE §
__.00G00c. | .0008G2] .0G0017.] .0Q0477 -~ 006008 |. ., 082500 | - 00C305 {——w GCODGE
|—.go00g0 | ~.0G2833 .0GLo28 P 0G2317 __.00006C0 {. «BC0O006 |.-vC2CIGT |—- GHCCOE |
—.03000¢ | -.000a4C { L00COG3 | ..000286. ~.=GO0E06 |- - £0G0000 0GC017 |— COIGLG |
000096 | = 000413 LGO0307 | . .064085 - . 0000GE ,0001258 WGGCiB6 |o.a0COLRH2
. 08caca | .000030 ,000045 | -. 630036 —«D00C0D «00310% | ..08C191 SOCGCIGLL
—. 060303 | .000C3B| .0OCOBY [.-+08CC10 _.0008C00 | .0GA00G { +OQCHAS 003180
_..JC0203 | ~«00008C7 L0006022. | . 0GDC36 —.0D0COC |..2039C00 |- +GGG3DE |- L G33CCC
000330 {-.000C627 | -.C0L338 | .00J¢d6 1. D00ECG | .. 000008 |-..GCCO002 | . 0GGECEE
030003 { -.000045 | ~-.000030 | -. 003625 -..0D0o0QC |—.082000 [—-.0CGDDRES LOC0oCE
~+0C3303 | ~,000009| ~.06CLR | . 062116 —- 060008 |- 0666068 {—.0GCD0Y L098600
_ 080306 | -.069202 | -.020%G5 | -.0000EC3 —+0000C0 |—.0080302 |. +00C381 | . GHQL0D
4., 00060G63 { .000800 | ~-0C0G0D2 | .0COC02 —. 000000 | .0C090% |—.0GCI00 LLR3C6T
_. 000003 {1 -~.,002008| ~.00CG632.| ~.00000C2 - +00DCGD |.«0C2000 | .DBL20G |..,C508CC
000383 | -~ 000004 | ~.0DG003 | . 00003 —s000008 |._.000090 | -<0GCI0@ JLudoEe
000300 | ~.000004 | -,060004 | -.G0OC0G 000000 |- 2COBCED |--0CL09C N
—.+D0030D | =.00000k | -~ 0CCC0G | =4 0C0GCH 2000000 J. 000062 |—-B06C20¢ |..GC388C
-2 BDC3IC. | -.000004 | ~.0G6C6203.{. ~.C00CC3 —s 0G6000 |--w0D230C0 | —eGGCIBS |- sLO2cEE
_.gogacs | ~.000004 | ~.000004 | -, 00CC0G ] 080000 |..40CGOOC [ .GGCBOC | - TC4CUS
- 00C303 ORI G0 v AN0AGL 1 __LOGLCAND ENEYIVE MR



5y

A

) ! y ) 4 »
TABLE II-FEM-ADI PERCENT DIFFERENCE
- Density, » Streamwise velocity, u ~ Normal velocity, v

x=0_1 .075 1,175 1,225 x=0.1.075].1/5 1.225 x=0. | .0/5 ] Al?b‘ . 225
| 0..020-) ¢, 006 |..0.009 [ 0.G1h G.000 |G.008 | 0,000 [g.0CQ £.000.|C.000 |0.0080 |5.0CC
= 0001 000 [.. 2007 [. €12 «000 .| 000 082 | .02 080 .. «DC3 | 023 |_.CCD
~44ﬂ&&_~;-ﬂun._ « 005 0C9 -« 000 |..0C1 - LOC5 2000 [ «8BC .|...0G0 «1C1
e 000§ L0001} .085| L0009 1 .000 001 L0004 | LOC7 o000 [Lo,009 |_..993 | .124
s 000,000 | 4005] LC12 000 | W004 | 4086 |-.010 _«060 | .,080 |_.e008 | .21
— . 00D .000] L0071 G014 . 000 .002 . 08B 13 _ .. 000 | 808 [ «952C 131
.-+ 000 }—.080) .029] L01E .o080 | . .002 .t09.| .015 2080 | 000 j..D20 R
- 000 [.D0¢ L3091 .ci9 .00 502 | .o11 Li7 2000 | .2C0 | .206 | o114
e 000 L.D00 ) L0017 » 321 T .003 012 | LL4in _..0086 Lew80-f—,003 Jiri
——soce 20021 - .012 2L23 « 000 003 013 | Jg22 | 0800 000 L0350 alid
L w000 | .802{ .01t 626 000 | .003 | .Gi5 02k —.000-l_.008 | ,152 .2272
- 00€ | 0027 015 s 026 « 035G W0RG5 | LC1B | LC27 . 000 L_.p02 Libt | .28z
..«00T | .002 016  JC&T L0060 . 006 021 | .03% |__.o000 J..000 . 223 294
W BO0 |- L0021 J0424 0325 2000 | 007 | 623 | .C3a 000 jaC00 | 183 | .2C4
. «0BLC 08270 0 4026 037 «000 | 006 |- 025 |...048 . .« 00D |.C28 . 185 Jiig
..»000 | «002 «023 | <054 L006-§ 2007 .028 CL5 —»000, | .500 | .136 |_..0G@
es DDG 1. 2093 '021 aEL}g |UUC* « 087 0728 « 053 —s300. L_.00C --_.DGG 800
.« 800G | «CLl&} 040 | LCBR «D0G | 4005 | .26 .| (55 000 .l...000 |- .coc [...ciT
~.a 000 | 002 1231 039 =000 .02 o019 .l. .08 080 J__.803 {000 l...CCC
s QO }.G26 018 | .o0n07 « 500 003 057 | LCin {2000 |_.000 [__.0CGC | ..DC2
~oa 0001 S04k 022 L0BD o006 000 | 003 .C28 2000 L. .68 |_.C530 |- ..GC:
- s cat 2035 058 . 113 .~ 080 035 | L0804 | .B5C —a000 [..000 |__.000 {_.0CE
_ .2 00C «063). 088 ,095 000 L0006 «00C | +04&0 000 |_.GD0 L0688 [__.00d
=000 . 081 « 155 «JE9 g =000 «{1G2 LG01 L 012 .« 0600 | +42B6 | . «B8S ,278
—.s 00C | o012} 040,002 ~ 2000 -1..006 | 026 [-.0Ch 22000 | .351.| .77C | .61k
.« 000 .} L0561, L8770 L0822 {..000.].,005 | .069 .|-.G61 -« 000 {_.003.4..325 . 524
.-« 0CG | +028 2072 + 089 «008--]-4004.] 003 [.40GC5 . 000 |_,803_}...0C2 | .,BC72
—.00e »00L 1. 019 « 030 ~a008-). 2003 1- 4,005 .1 .+00C1 _.000 |_.200 | .C3n |_.045
~.aGOT |- 2007 «019 7 4012 «000. {.«022 | ..086 | . .GG3 ~+ 000 L .000 | 085 L aGE
Cf--a 0001 <0851 L0013 | L8122 . ..000.| J001 0032 .| J0C2 _«.000 . {009 J__«080 ._.00¢
.~ 000 | 2007 |  .020¢ JBC3| [(...000.}..000 | .084.]..000 008 | .gp3. i .030 |..GC3
- 000 [ <005 «Gdi} .GC3 e 000 L ,000.}...000-.|. .62 000 08B .| L0360 | DGR
—=+ 080, | <005 |, 085 | .G05 e a B0 8 { .0 000 |. 4800} 00860 | 4._.Do0_| 004 2701 LEL3
-+090 | +00571 0A5 | LGLS ~ w006 | 009 [~ 000 {-aG02| -J_.000.} _.002 | Locte | .ics
4020 | L0051 OG5 JGC5 w000 ..} 40083 | 4000 | JCGOC |00 ) 2000 | AEn0_} JLC2
060 b .005 kL0351 L0L6 000 | <098 | .o020 | .oon L0800 W000 | L850 | LC@0
L 008 | A805 0 o065 L6050 .00 002 2000 | JGGG L ..000. ) w000 | JCeg.| .oco
~eD30 SCO7 L 2027 ] .007 0808 .| .00 | . .0C0 | .GC0 #0001 000 ] ..CCD | <GOGOC
Noa b 005} - 8051 .0CG7 000 L0800 LG8 L0005 L0680 1 LGED LEne



My Computatmnal
f domam

Figu_te 1~ Fldw field conﬁguraﬁon, supersenic jet mixing.




;ugf:s-:.

Supersonic
-nflow

P
spezilfied

Figure 2, -

~ Subsonic inflow
dp : ’
-§§~=-0, u?v! specitied

e ma s

Center symmstry
| du  3dp
v = 045;f5='§;'=:0

, Supersonic outflow T
Computational boundary !
B conuition ‘

830 - 33u _ BBV
xS ¥

=
>

Boundaryj condiﬁOns_' on computational domain.



7,89 10,11, 12

4;5,6

15

16

NJ22,23,24

1282930

119,20,21

137 38 39 \\\%

33

40, 41, 42

4

\ 146, 47, 48

£ 55,56, 57

~ Figure 3.~ Node numbering scheme for the B-spline element.

06566

47



BF

H ' NPT SRS v ' i :
ADI domain truncated for FEM purposes =
———e —_—— ——— | ———
[————z ——— ———p —_—
f————y — —_—— —_
> —_— —_—— —_—_—
DN _ —_— —_—
r————) ———— —_—— ———
———a 5 —_— —_— ———
—— —_— —_— —_—
s —— —— ———y
——— —_— —_— e
———y > —_— —_—
_ > > ——— —_—
I W ——— ————p —_——
| — - . —_— » >
ot ———— > 3
| —_— > >
5 —_——— , " ’
o ——— > »
————p —_— - — —
-—_.._._._). D = »
——— ey ——— > - .
S ¥ — > »
[ ————y — > —
[ er————y. —r———— ’ + T —
. . > . ) -
s ——— . — n
. s i
> $ »

I
075

- 1
N

Figute 4, - Vel_odity'_vector plots for the F_EM gridwork. ‘



6%

—
——— e -
— o — [ e e b T Bl et
bt it a8 A P it
s B e e B -t kb bt 1 e eb e by Bk o e B - W sty = -
- < e - — - ana
M e P -t v L - o = —— e ottt e 12 i w v T Rb 8 1) e ey 4 F——ran
[T S — oy
- -
- ‘ : —.
T » Wy b — —— A e
bt v et e et — e, R s
T o - [ iy o it e Ve ———_
= B o R = —r se - - -
T = - = - ey = = T p——y
3 o - . ™, =%, s - T ————
— Kfer) -, o, . - [T
- o = - D "
. o W - ol
— =
Jpem—

Figure 5, - Velocity vector plots for the ADI gridwork. { Interpolated using

FEM solufion model. )



%
9
8
8
o
o

o
060
. p

oooooooooooooouoooo

=N

e Co00000 .0 fa

S | e Y
o0 0 00 00 0 0 ocaoo® . =

PCOCO000 0 0 &es
o . .

’ o | _
c0000000000mO®® o

1 ) -
—

2. 41"'

(a) x=0.075
Muire 6. - Steady state results, FEM solution.
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Figure 6, - Concluded.
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Figure 7. - FEM-ADI percent difference in density.
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- Figure 8- FEM-ADI percent difference in streamwise velocity component,
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Figure 9.~ FEM-ADI percent difference In normal velocity component.
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“Figure 10.- Continued.
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Figure 10, - Continued.
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Figure 10.~ Concluded.




